Molecular stratification of idiopathic nephrotic syndrome (original) (raw)
Banh, T. H. et al. Ethnic differences in incidence and outcomes of childhood nephrotic syndrome. Clin. J. Am. Soc. Nephrol.11, 1760–1768 (2016). CASPubMedPubMed Central Google Scholar
Kim, J. S. et al. High incidence of initial and late steroid resistance in childhood nephrotic syndrome. Kidney Int.68, 1275–1281 (2005). CASPubMed Google Scholar
Bierzynska, A. et al. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int.91, 937–947 (2017). PubMed Google Scholar
Saleem, M. A. One hundred ways to kill a podocyte. Nephrol. Dial. Transpl.30, 1266–1271 (2015). CAS Google Scholar
Hunte, W., al-Ghraoui, F. & Cohen, R. J. Secondary syphilis and the nephrotic syndrome. J. Am. Soc. Nephrol.3, 1351–1355 (1993). CASPubMed Google Scholar
Becker, C. G. et al. Nephrotic syndrome after contact with mercury. A report of five cases, three after the use of ammoniated mercury ointment. Arch. Intern. Med.110, 178–186 (1962). CASPubMed Google Scholar
Maas, R. J. et al. Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat. Rev. Nephrol.12, 768–776 (2016). PubMed Google Scholar
Report of the International Study of Kidney Disease in Children. Minimal change nephrotic syndrome in children: deaths during the first 5 to 15 years’ observation. Pediatrics73, 497–501 (1984). Google Scholar
Niaudet, P. Long-term outcome of children with steroid-sensitive idiopathic nephrotic syndrome. Clin. J. Am. Soc. Nephrol.4, 1547–1548 (2009). PubMed Google Scholar
Vivarelli, M. et al. Minimal change disease. Clin. J. Am. Soc. Nephrol.12, 332–345 (2017). CASPubMed Google Scholar
D’Agati, V. D. et al. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am. J. Kidney Dis.43, 368–382 (2004). PubMed Google Scholar
Trautmann, A. et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin. J. Am. Soc. Nephrol.10, 592–600 (2015). PubMedPubMed Central Google Scholar
Bagga, A., Sinha, A. & Moudgil, A. Rituximab in patients with the steroid-resistant nephrotic syndrome. N. Engl. J. Med.356, 2751–2752 (2007). CASPubMed Google Scholar
Iijima, K. et al. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet384, 1273–1281 (2014). CASPubMed Google Scholar
Sinha, A. et al. Efficacy and safety of rituximab in children with difficult-to-treat nephrotic syndrome. Nephrol. Dial. Transpl.30, 96–106 (2015). CAS Google Scholar
Trachtman, H. et al. DUET: a phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. J. Am. Soc. Nephrol.29, 2745–2754 (2018). CASPubMedPubMed Central Google Scholar
Fan, X. et al. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight1, e86934 (2016). PubMedPubMed Central Google Scholar
Welsh, G. I. & Saleem, M. A. The podocyte cytoskeleton–key to a functioning glomerulus in health and disease. Nat. Rev. Nephrol.8, 14–21 (2012). CAS Google Scholar
Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell74, 679–691 (1993). CASPubMed Google Scholar
Kestila, M. et al. Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol. Cell1, 575–582 (1998). CASPubMed Google Scholar
Welsh, G. I. & Saleem, M. A. Nephrin — signature molecule of the glomerular podocyte? J. Pathol.220, 328–337 (2010). CASPubMed Google Scholar
Simons, M. et al. Involvement of lipid rafts in nephrin phosphorylation and organization of the glomerular slit diaphragm. Am. J. Pathol.159, 1069–1077 (2001). CASPubMedPubMed Central Google Scholar
Schwarz, K. et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J. Clin. Invest.108, 1621–1629 (2001). CASPubMedPubMed Central Google Scholar
Weber, S. et al. NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int.66, 571–579 (2004). CASPubMed Google Scholar
Shih, N. Y. et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science286, 312–315 (1999). CASPubMed Google Scholar
Bierzynska, A. et al. MAGI2 mutations cause congenital nephrotic syndrome. J. Am. Soc. Nephrol.28, 1614–1621 (2017). CASPubMed Google Scholar
van Duijn, T. J. et al. Rac1 recruits the adapter protein CMS/CD2AP to cell-cell contacts. J. Biol. Chem.285, 20137–20146 (2010). PubMedPubMed Central Google Scholar
Huber, T. B. et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol. Cell. Biol.23, 4917–4928 (2003). CASPubMedPubMed Central Google Scholar
Akilesh, S., Koziell, A. & Shaw, A. S. Basic science meets clinical medicine: identification of a CD2AP-deficient patient. Kidney Int.72, 1181–1183 (2007). CASPubMed Google Scholar
Gigante, M. et al. CD2AP mutations are associated with sporadic nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). Nephrol. Dial. Transpl.24, 1858–1864 (2009). CAS Google Scholar
Akilesh, S. et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J. Clin. Invest.121, 4127–4137 (2011). CASPubMedPubMed Central Google Scholar
Gee, H. Y. et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J. Clin. Invest.123, 3243–3253 (2013). CASPubMedPubMed Central Google Scholar
Harris, J. J. et al. Active proteases in nephrotic plasma lead to a podocin-dependent phosphorylation of VASP in podocytes via protease activated receptor-1. J. Pathol.229, 660–671 (2013). CASPubMed Google Scholar
Pozzi, A. et al. Beta1 integrin expression by podocytes is required to maintain glomerular structural integrity. Dev. Biol.316, 288–301 (2008). CASPubMedPubMed Central Google Scholar
Kanasaki, K. et al. Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. Dev. Biol.313, 584–593 (2008). CASPubMed Google Scholar
Wei, C. et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med.14, 55–63 (2008). CASPubMed Google Scholar
Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med.17, 952–960 (2011). CASPubMedPubMed Central Google Scholar
Lin, Y., Rao, J., Zha, X. & Xu, H. Angiopoietin-like 3 induces podocyte F-actin rearrangement through integrin alpha(V)beta(3)/FAK/PI3K pathway-mediated Rac1 activation. Biomed Res. Int.2013, 135608 (2013). PubMedPubMed Central Google Scholar
Ashraf, S. et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J. Clin. Invest.123, 5179–5189 (2013). CASPubMedPubMed Central Google Scholar
Heeringa, S. F. et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest.121, 2013–2024 (2011). CASPubMedPubMed Central Google Scholar
Diomedi-Camassei, F. et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J. Am. Soc. Nephrol.18, 2773–2780 (2007). CASPubMed Google Scholar
Lopez, L. C. et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am. J. Hum. Genet.79, 1125–1129 (2006). CASPubMedPubMed Central Google Scholar
Braun, D. A. et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat. Genet.48, 457–465 (2016). CASPubMedPubMed Central Google Scholar
Shalhoub, R. J. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet2, 556–560 (1974). CASPubMed Google Scholar
Eremina, V. & Quaggin, S. E. The role of VEGF-A in glomerular development and function. Curr. Opin. Nephrol. Hypertens.13, 9–15 (2004). CASPubMed Google Scholar
Daehn, I. et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Invest.124, 1608–1621 (2014). CASPubMedPubMed Central Google Scholar
Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest.111, 707–716 (2003). CASPubMedPubMed Central Google Scholar
Keir, L. S. et al. VEGF regulates local inhibitory complement proteins in the eye and kidney. J. Clin. Invest.127, 199–214 (2017). PubMed Google Scholar
Guan, Z., VanBeusecum, J. P. & Inscho, E. W. Endothelin and the renal microcirculation. Semin. Nephrol.35, 145–155 (2015). CASPubMedPubMed Central Google Scholar
Lenoir, O. et al. Direct action of endothelin-1 on podocytes promotes diabetic glomerulosclerosis. J. Am. Soc. Nephrol.25, 1050–1062 (2014). CASPubMedPubMed Central Google Scholar
Barton, M. Therapeutic potential of endothelin receptor antagonists for chronic proteinuric renal disease in humans. Biochim. Biophys. Acta1802, 1203–1213 (2010). CASPubMed Google Scholar
Coward, R. J. et al. The human glomerular podocyte is a novel target for insulin action. Diabetes54, 3095–3102 (2005). CASPubMed Google Scholar
Welsh, G. I. et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab.12, 329–340 (2010). CASPubMedPubMed Central Google Scholar
Keir, L. S., Marks, S. D. & Kim, J. J. Shigatoxin-associated hemolytic uremic syndrome: current molecular mechanisms and future therapies. Drug Des. Dev. Ther.6, 195–208 (2012). CAS Google Scholar
Psotka, M. A. et al. Shiga toxin 2 targets the murine renal collecting duct epithelium. Infect. Immun.77, 959–969 (2009). CASPubMedPubMed Central Google Scholar
Davin, J. C. The glomerular permeability factors in idiopathic nephrotic syndrome. Pediatr. Nephrol.31, 207–215 (2016). PubMed Google Scholar
Bierzynska, A. & Saleem, M. A. Deriving and understanding the risk of post-transplant recurrence of nephrotic syndrome in the light of current molecular and genetic advances. Pediatr. Nephrol.33, 2027–2035 (2018). PubMed Google Scholar
Gallon, L. et al. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N. Engl. J. Med.366, 1648–1649 (2012). CASPubMed Google Scholar
Hinkes, B. et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat. Genet.38, 1397–1405 (2006). CASPubMed Google Scholar
Wasilewska, A. M., Kuroczycka-Saniutycz, E. & Zoch-Zwierz, W. Effect of cyclosporin A on proteinuria in the course of glomerulopathy associated with WT1 mutations. Eur. J. Pediatr.170, 389–391 (2011). CASPubMed Google Scholar
Kuusniemi, A. M. et al. Plasma exchange and retransplantation in recurrent nephrosis of patients with congenital nephrotic syndrome of the Finnish type (NPHS1). Transplantation83, 1316–1323 (2007). PubMed Google Scholar
Bertelli, R. et al. Recurrence of focal segmental glomerulosclerosis after renal transplantation in patients with mutations of podocin. Am. J. Kidney Dis.41, 1314–1321 (2003). CASPubMed Google Scholar
Billing, H. et al. NPHS2 mutation associated with recurrence of proteinuria after transplantation. Pediatr. Nephrol.19, 561–564 (2004). PubMed Google Scholar
Becker-Cohen, R. et al. Recurrent nephrotic syndrome in homozygous truncating NPHS2 mutation is not due to anti-podocin antibodies. Am. J. Transpl.7, 256–260 (2007). CAS Google Scholar
Hocker, B. et al. Recurrence of proteinuria 10 years post-transplant in NPHS2-associated focal segmental glomerulosclerosis after conversion from cyclosporin A to sirolimus. Pediatr. Nephrol.21, 1476–1479 (2006). PubMed Google Scholar
Ruf, R. G. et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J. Am. Soc. Nephrol.15, 722–732 (2004). PubMed Google Scholar
Caridi, G. et al. Heterozygous NPHS1 or NPHS2 mutations in responsive nephrotic syndrome and the multifactorial origin of proteinuria. Kidney Int.66, 1715–1716 (2004). PubMed Google Scholar
Dorval, G. et al. Clinical and genetic heterogeneity in familial steroid-sensitive nephrotic syndrome. Pediatr. Nephrol.33, 473–483 (2018). PubMed Google Scholar
Gee, H. Y. et al. Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am. J. Hum. Genet.94, 884–890 (2014). CASPubMedPubMed Central Google Scholar
Gee, H. Y. et al. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J. Clin. Investig.125, 2375–2384 (2015). PubMedPubMed Central Google Scholar
Xing, C. Y. et al. Direct effects of dexamethasone on human podocytes. Kidney Int.70, 1038–1045 (2006). CASPubMed Google Scholar
Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med.14, 931–938 (2008). CASPubMedPubMed Central Google Scholar
McCarthy, H. J. et al. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol.8, 637–648 (2013). CASPubMedPubMed Central Google Scholar
Sen, E. S. et al. Clinical genetic testing using a custom-designed steroid-resistant nephrotic syndrome gene panel: analysis and recommendations. J. Med. Genet.54, 795–804 (2017). CASPubMed Google Scholar
Lee, H. et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA312, 1880–1887 (2014). PubMedPubMed Central Google Scholar
Sadowski, C. E. et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol.26, 1279–1289 (2015). CASPubMed Google Scholar
Gribouval, O. et al. Identification of genetic causes for sporadic steroid-resistant nephrotic syndrome in adults. Kidney Int.94, 1013–1022 (2018). CASPubMed Google Scholar
Yao, T. et al. Integration of genetic testing and pathology for the diagnosis of adults with FSGS. Clin. J. Am. Soc. Nephrol.14, 213–223 (2019). PubMedPubMed Central Google Scholar
Robson, K. J. et al. HLA and kidney disease: from associations to mechanisms. Nat. Rev. Nephrol.14, 636–655 (2018). CASPubMed Google Scholar
Jia, X. Y. et al. Strong association of the HLA-DR/DQ locus with childhood steroid-sensitive nephrotic syndrome in the Japanese population. J. Am. Soc. Nephrol.29, 2189–2199 (2018). CASPubMedPubMed Central Google Scholar
Debiec, H. et al. Transethnic, genome-wide analysis reveals immune-related risk alleles and phenotypic correlates in pediatric steroid-sensitive nephrotic syndrome. J. Am. Soc. Nephrol.29, 2000–2013 (2018). CASPubMedPubMed Central Google Scholar
Crawford, B. D. et al. Evaluating Mendelian nephrotic syndrome genes for evidence for risk alleles or oligogenicity that explain heritability. Pediatr. Nephrol.32, 467–476 (2017). PubMed Google Scholar
Kienzl-Wagner, K., Waldegger, S. & Schneeberger, S. Disease recurrence-the sword of Damocles in kidney transplantation for primary focal segmental glomerulosclerosis. Front. Immunol.10, 1669 (2019). PubMedPubMed Central Google Scholar
Ding, W. Y. et al. Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. J. Am. Soc. Nephrol.25, 1342–1348 (2014). CASPubMedPubMed Central Google Scholar
Sinha, A. et al. Disease course in steroid sensitive nephrotic syndrome. Indian Pediatr.49, 881–887 (2012). PubMed Google Scholar
Buscher, A. K. et al. Rapid response to cyclosporin A and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol.11, 245–253 (2016). PubMed Google Scholar
Savin, V. J. et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N. Engl. J. Med.334, 878–883 (1996). CASPubMed Google Scholar
Cattran, D. et al. Serial estimates of serum permeability activity and clinical correlates in patients with native kidney focal segmental glomerulosclerosis. J. Am. Soc. Nephrol.14, 448–453 (2003). CASPubMed Google Scholar
Trachtman, H. et al. Glomerular permeability activity: prevalence and prognostic value in pediatric patients with idiopathic nephrotic syndrome. Am. J. Kidney Dis.44, 604–610 (2004). PubMed Google Scholar
Saleem, M. A. et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J. Am. Soc. Nephrol.13, 630–638 (2002). CASPubMed Google Scholar
Srivastava, P. et al. Development of a novel cell-based assay to diagnose recurrent focal segmental glomerulosclerosis patients. Kidney Int.95, 708–716 (2019). PubMedPubMed Central Google Scholar
Kitzler, T. M. et al. Use of genomic and functional analysis to characterize patients with steroid-resistant nephrotic syndrome. Pediatr. Nephrol.33, 1741–1750 (2018). PubMed Google Scholar
Bitzan, M. et al. TNF alpha pathway blockade ameliorates toxic effects of FSGS plasma on podocyte cytoskeleton and beta 3 integrin activation. Pediatr. Nephrol.27, 2217–2226 (2012). PubMed Google Scholar
Coward, R. J. et al. Nephrotic plasma alters slit diaphragm-dependent signaling and translocates nephrin, podocin, and CD2 associated protein in cultured human podocytes. J. Am. Soc. Nephrol.16, 629–637 (2005). CASPubMed Google Scholar
May, C. J. et al. Human Th17 cells produce a soluble mediator that increases podocyte motility via signalling pathways which mimic PAR-1 activation. Am. J. Physiol. Renal Physiol.317, F913–F921 (2019). PubMedPubMed Central Google Scholar
Novelli, R., Benigni, A. & Remuzzi, G. The role of B7-1 in proteinuria of glomerular origin. Nat. Rev. Nephrol.14, 589–596 (2018). CASPubMed Google Scholar
Kim, E. Y., Roshanravan, H. & Dryer, S. E. Changes in podocyte TRPC channels evoked by plasma and sera from patients with recurrent FSGS and by putative glomerular permeability factors. Biochim. Biophys. Acta1863, 2342–2354 (2017). CASPubMed Central Google Scholar
Morath, C. et al. Management of severe recurrent focal segmental glomerulosclerosis through circulating soluble urokinase receptor modification. Am. J. Ther.20, 226–229 (2013). PubMed Google Scholar
Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science308, 1801–1804 (2005). CASPubMed Google Scholar
Verheijden, K. A. T. et al. The calcium-dependent protease calpain-1 links TRPC6 activity to podocyte injury. J. Am. Soc. Nephrol.29, 2099–2109 (2018). CASPubMedPubMed Central Google Scholar
Veit, G. et al. Structure-guided combination therapy to potently improve the function of mutant CFTRs. Nat. Med.24, 1732–1742 (2018). CASPubMedPubMed Central Google Scholar
Roselli, S. et al. Plasma membrane targeting of podocin through the classical exocytic pathway: effect of NPHS2 mutations. Traffic5, 37–44 (2004). CASPubMed Google Scholar
Nathwani, A. C., Davidoff, A. M. & Tuddenham, E. G. D. Advances in gene therapy for hemophilia. Hum. Gene Ther.28, 1004–1012 (2017). CASPubMed Google Scholar
Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med.377, 1713–1722 (2017). CASPubMed Google Scholar
Hale, L. J. et al. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat. Commun.9, 5167 (2018). PubMedPubMed Central Google Scholar
Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature526, 564–568 (2015). CASPubMed Google Scholar
Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol.33, 1193–1200 (2015). CASPubMedPubMed Central Google Scholar
Sharmin, S. et al. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J. Am. Soc. Nephrol.27, 1778–1791 (2016). CASPubMed Google Scholar
Taguchi, A. & Nishinakamura, R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell21, 730–773 (2017). CASPubMed Google Scholar
Xinaris, C. et al. Functional human podocytes generated in organoids from amniotic fluid stem cells. J. Am. Soc. Nephrol.27, 1400–1411 (2016). CASPubMed Google Scholar
Merchant, M. L. et al. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat. Rev. Nephrol.13, 731–749 (2017). CASPubMedPubMed Central Google Scholar
Lai, Z. W., Petrera, A. & Schilling, O. Protein amino-terminal modifications and proteomic approaches for N-terminal profiling. Curr. Opin. Chem. Biol.24, 71–79 (2015). CASPubMed Google Scholar
Lange, P. F. & Overall, C. M. Protein TAILS: when termini tell tales of proteolysis and function. Curr. Opin. Chem. Biol.17, 73–82 (2013). CASPubMed Google Scholar
Turk, B. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov.5, 785–799 (2006). CASPubMed Google Scholar
Wiita, A. P. et al. Circulating proteolytic signatures of chemotherapy-induced cell death in humans discovered by N-terminal labeling. Proc. Natl Acad. Sci. USA111, 7594–7599 (2014). CASPubMedPubMed Central Google Scholar
Meyer-Schwesinger, C. et al. Ubiquitin C-terminal hydrolase-l1 activity induces polyubiquitin accumulation in podocytes and increases proteinuria in rat membranous nephropathy. Am. J. Pathol.178, 2044–2057 (2011). CASPubMedPubMed Central Google Scholar
Meyer-Schwesinger, C. The ubiquitin-proteasome system in kidney physiology and disease. Nat. Rev. Nephrol.15, 393–411 (2019). PubMed Google Scholar
Spath, M. R. et al. The proteome microenvironment determines the protective effect of preconditioning in cisplatin-induced acute kidney injury. Kidney Int.95, 333–349 (2019). PubMed Google Scholar
Karpman, D., Stahl, A. L. & Arvidsson, I. Extracellular vesicles in renal disease. Nat. Rev. Nephrol.13, 545–562 (2017). CASPubMed Google Scholar
Hogan, M. C. et al. Subfractionation, characterization, and in-depth proteomic analysis of glomerular membrane vesicles in human urine. Kidney Int.85, 1225–1237 (2014). CASPubMed Google Scholar
Erkan, E. et al. Distinct urinary lipid profile in children with focal segmental glomerulosclerosis. Pediatr. Nephrol.31, 581–588 (2016). PubMed Google Scholar
Kaisar, M. et al. Plasma degradome affected by variable storage of human blood. Clin. Proteom.13, 26 (2016). Google Scholar
Trautmann, A., Lipska-Zietkiewicz, B. S. & Schaefer, F. Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: the PodoNet Registry. Front. Pediatr.6, 200 (2018). PubMedPubMed Central Google Scholar
Gadegbeku, C. A. et al. Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int.83, 749–756 (2013). PubMedPubMed Central Google Scholar
Dossier, C. et al. Five-year outcome of children with idiopathic nephrotic syndrome: the NEPHROVIR population-based cohort study. Pediatr. Nephrol.34, 671–678 (2019). PubMed Google Scholar
Scheufele, E. et al. tranSMART: an open source knowledge management and high content data analytics platform. AMIA Jt. Summits Transl. Sci. Proc.2014, 96–101 (2014). PubMedPubMed Central Google Scholar
Ding, W. Y. et al. Big data and stratified medicine: what does it mean for children? Arch. Dis. Child.104, 389–394 (2019). PubMed Google Scholar
Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell165, 551–565 (2016). CASPubMedPubMed Central Google Scholar
Agius, P., Ying, Y. & Campbell, C. Bayesian unsupervised learning with multiple data types. Stat. Appl. Genet. Mol. Biol.8, 27 (2009). Google Scholar
Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature486, 346–352 (2012). CASPubMedPubMed Central Google Scholar
Perez, V. et al. Comparative differential proteomic analysis of minimal change disease and focal segmental glomerulosclerosis. BMC Nephrol.18, 49 (2017). PubMedPubMed Central Google Scholar
Choi, Y. W. et al. Potential urine proteomics biomarkers for primary nephrotic syndrome. Clin. Proteom.14, 18 (2017). Google Scholar
Huang, Z., Zhang, Y., Zhou, J. & Zhang, Y. Urinary exosomal miR-193a can be a potential biomarker for the diagnosis of primary focal segmental glomerulosclerosis in children. Biomed. Res. Int.2017, 7298160 (2017). PubMedPubMed Central Google Scholar
Ramezani, A. et al. Circulating and urinary microRNA profile in focal segmental glomerulosclerosis: a pilot study. Eur. J. Clin. Invest.45, 394–404 (2015). CASPubMedPubMed Central Google Scholar
Lee, J. E. et al. Systematic biomarker discovery and coordinative validation for different primary nephrotic syndromes using gas chromatography-mass spectrometry. J. Chromatogr. A1453, 105–115 (2016). CASPubMed Google Scholar
Sui, W. et al. Circulating microRNAs as potential biomarkers for nephrotic syndrome. Iran. J. Kidney Dis.8, 371–376 (2014). PubMed Google Scholar
Lu, M. et al. Differentially expressed microRNAs in kidney biopsies from various subtypes of nephrotic children. Exp. Mol. Pathol.99, 590–595 (2015). CASPubMed Google Scholar
Nafar, M. et al. The novel diagnostic biomarkers for focal segmental glomerulosclerosis. Int. J. Nephrol.2014, 574261 (2014). PubMedPubMed Central Google Scholar
Pant, P. et al. Serum sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of patients with membranous nephropathy and focal and segmental glomerulosclerosis. Saudi J. Kidney Dis. Transpl.27, 539–545 (2016). PubMed Google Scholar
Suresh, C. P. et al. Differentially expressed urinary biomarkers in children with idiopathic nephrotic syndrome. Clin. Exp. Nephrol.20, 273–283 (2016). CASPubMed Google Scholar
Kalantari, S. et al. Predictive urinary biomarkers for steroid-resistant and steroid-sensitive focal segmental glomerulosclerosis using high resolution mass spectrometry and multivariate statistical analysis. BMC Nephrol.15, 141 (2014). PubMedPubMed Central Google Scholar
Nickavar, A. et al. Urine neutrophil gelatinase associated lipocalin to creatinine ratio: a novel index for steroid response in idiopathic nephrotic syndrome. Indian J. Pediatr.83, 18–21 (2016). PubMed Google Scholar
Gopal, N. et al. Assay of urinary protein-bound sialic acid can differentiate steroidsensitive nephrotic syndrome from steroid-resistant cases. Saudi J. Kidney Dis. Transpl.27, 37–40 (2016). PubMed Google Scholar
Bennett, M. R. et al. Urinary vitamin D-binding protein as a biomarker of steroid-resistant nephrotic syndrome. Biomark. Insights11, 1–6 (2016). CASPubMedPubMed Central Google Scholar
Badr, H. S., El-Hawy, M. A. & Helwa, M. A. P-glycoprotein activity in steroid-responsive vs. steroid-resistant nephrotic syndrome. Indian J. Pediatr.83, 1222–1226 (2016). PubMed Google Scholar
Turolo, S. et al. SXR rs3842689: a prognostic factor for steroid sensitivity or resistance in pediatric idiopathic nephrotic syndrome. Pharmacogenomics17, 1227–1233 (2016). CASPubMed Google Scholar
Mishra, O. P. et al. Toll-like receptor 3 (TLR-3), TLR-4 and CD80 expression in peripheral blood mononuclear cells and urinary CD80 levels in children with idiopathic nephrotic syndrome. Pediatr. Nephrol.32, 1355–1361 (2017). PubMed Google Scholar
Gopal, N. et al. Assay of urinary protein carbonyl content can predict the steroid dependence and resistance in children with idiopathic nephrotic syndrome. Saudi J. Kidney Dis. Transpl.28, 268–272 (2017). PubMed Google Scholar
Bennett, M. R. et al. A novel biomarker panel to identify steroid resistance in childhood idiopathic nephrotic syndrome. Biomark. Insights12, 1–11 (2017). CAS Google Scholar
Watany, M. M. & El-Horany, H. E. Nephronectin (NPNT) and the prediction of nephrotic syndrome response to steroid treatment. Eur. J. Hum. Genet.26, 1354–1360 (2018). CASPubMedPubMed Central Google Scholar
Andersen, R. F. et al. Plasma and urine proteomic profiles in childhood idiopathic nephrotic syndrome. Proteom. Clin. Appl.6, 382–393 (2012). CAS Google Scholar
Chan, C. Y. et al. T lymphocyte activation markers as predictors of responsiveness to rituximab among patients with FSGS. Clin. J. Am. Soc. Nephrol.11, 1360–1368 (2016). CASPubMedPubMed Central Google Scholar
Kuribayashi-Okuma, E. et al. Proteomics approach identifies factors associated with the response to low-density lipoprotein apheresis therapy in patients with steroid-resistant nephrotic syndrome. Ther. Apher. Dial.20, 174–182 (2016). CASPubMed Google Scholar
Kalantari, S. et al. Urinary prognostic biomarkers in patients with focal segmental glomerulosclerosis. Nephrourol. Mon.6, e16806 (2014). PubMedPubMed Central Google Scholar
Lopez-Hellin, J. et al. A form of apolipoprotein a-I is found specifically in relapses of focal segmental glomerulosclerosis following transplantation. Am. J. Transpl.13, 493–500 (2013). CAS Google Scholar
Puig-Gay, N. et al. Apolipoprotein A-Ib as a biomarker of focal segmental glomerulosclerosis recurrence after kidney transplantation: diagnostic performance and assessment of its prognostic value – a multi-centre cohort study. Transpl. Int.32, 313–322 (2019). CASPubMed Google Scholar