Modern-day environmental factors in the pathogenesis of osteoarthritis (original) (raw)
Felson, D. T. et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann. Intern. Med.133, 635–646 (2000). CASPubMed Google Scholar
Bijlsma, J. W., Berenbaum, F. & Lafeber, F. P. Osteoarthritis: an update with relevance for clinical practice. Lancet377, 2115–2126 (2011). PubMed Google Scholar
Wallace, I. J. et al. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc. Natl Acad. Sci. USA114, 9332–9336 (2017). CASPubMedPubMed Central Google Scholar
Nguyen, U. S. et al. Increasing prevalence of knee pain and symptomatic knee osteoarthritis: survey and cohort data. Ann. Intern. Med.155, 725–732 (2011). PubMedPubMed Central Google Scholar
GBD 2013 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet386, 2145–2191 (2015). PubMed Central Google Scholar
Kiadaliri, A. A., Lohmander, L. S., Moradi-Lakeh, M., Petersson, I. F. & Englund, M. High and rising burden of hip and knee osteoarthritis in the Nordic region, 1990–2015. Acta Orthop.89, 177–183 (2017). PubMedPubMed Central Google Scholar
Sandell, L. J. Etiology of osteoarthritis: genetics and synovial joint development. Nat. Rev. Rheumatol.8, 77–89 (2012). CASPubMed Google Scholar
Gluckman, P. D. & Hanson, M. A. Mismatch: The Lifestyle Diseases Timebomb (Oxford Univ. Press, 2013).
Lieberman, D. E. The Story of the Human Body: Evolution, Health and Disease (Pantheon Books, 2013).
Rose, M. R. & Lauder, G. V. Adaptation (Academic Press, 1996).
Menke, A., Casagrande, S., Geiss, L. & Cowie, C. C. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA314, 1021–1029 (2015). CASPubMed Google Scholar
Zuk, M. Paleofantasy: What Evolution Really Tells Us About Sex, Diet, and How We Live (W. H. Norton, 2014).
Pontzer, H. et al. Locomotor anatomy and biomechanics of the Dmanisi hominins. J. Hum. Evol.58, 492–504 (2010). PubMed Google Scholar
Larsen, C. S. et al. Bioarchaeology of Neolithic Çatalhöyük: lives and lifestyles of an early farming society in transition. J. World Prehistory28, 27–68 (2015). Google Scholar
Rogers, J. & Dieppe, P. Is tibiofemoral osteoarthritis in the knee joint a new disease? Ann. Rheum. Dis.53, 612–613 (1994). CASPubMedPubMed Central Google Scholar
Inoue, K. et al. Prevalence of large-joint osteoarthritis in Asian and Caucasian skeletal populations. Rheumatology40, 70–73 (2001). CASPubMed Google Scholar
Lieberman, D. E. Is exercise really medicine? An evolutionary perspective. Curr. Sports Med. Rep.14, 313–319 (2015). PubMed Google Scholar
Reyes, C. et al. Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: a population-based cohort study. Arthritis Rheum.68, 1869–1875 (2016). Google Scholar
Felson, D. T. Epidemiology of hip and knee osteoarthritis. Epidemiol. Rev.10, 1–28 (1988). CASPubMed Google Scholar
Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet384, 766–781 (2014). PubMedPubMed Central Google Scholar
Wluka, A. E., Lombard, C. B. & Cicuttini, F. M. Tackling obesity in knee osteoarthritis. Nat. Rev. Rheumatol.9, 225–235 (2013). PubMed Google Scholar
Felson, D. T., Anderson, J. J., Naimark, A., Walker, A. M. & Meenan, R. F. Obesity and knee osteoarthritis. The Framingham Study. Ann. Intern. Med.109, 18–24 (1988). CASPubMed Google Scholar
Gelber, A. C. et al. Body mass index in young men and the risk of subsequent knee and hip osteoarthritis. Am. J. Med.107, 542–548 (1999). CASPubMed Google Scholar
Richette, P. et al. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann. Rheum. Dis.70, 139–144 (2011). CASPubMed Google Scholar
King, W. C. et al. Change in pain and physical function following bariatric surgery for severe obesity. JAMA315, 1362–1371 (2016). CASPubMedPubMed Central Google Scholar
Gersing, A. S. et al. Is weight loss associated with less progression of changes in knee articular cartilage among obese and overweight patients as assessed with MR imaging over 48 months? Data from the Osteoarthritis Initiative. Radiology284, 508–520 (2017). PubMed Google Scholar
Wearing, S. C., Hennig, E. M., Byrne, N. M., Steele, J. R. & Hills, A. P. Musculoskeletal disorders associated with obesity: a biomechanical perspective. Obes. Rev.7, 239–250 (2006). CASPubMed Google Scholar
Griffin, T. M. & Guilak, F. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc. Sport Sci. Rev.33, 195–200 (2005). PubMed Google Scholar
Giorgi, M., Carriero, A., Shefelbine, S. J. & Nowlan, N. C. Effects of normal and abnormal loading conditions on morphogenesis of the prenatal hip joint: application to hip dysplasia. J. Biomechan.48, 3390–3397 (2015). Google Scholar
Felson, D. T., Goggins, J., Niu, J., Zhang, Y. & Hunter, D. J. The effect of body weight on progression of knee osteoarthritis is dependent on alignment. Arthritis Rheum.50, 3904–3909 (2004). PubMed Google Scholar
Slemenda, C. et al. Reduced quadriceps strength relative to body weight: a risk factor for knee osteoarthritis in women? Arthritis Rheum.41, 1951–1959 (1998). CASPubMed Google Scholar
Buckwalter, J. A. & Mankin, H. J. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr. Course Lect.47, 477–486 (1998). CASPubMed Google Scholar
Sanchez-Adams, J., Leddy, H. A., McNulty, A. L., O’Conor, C. J. & Guilak, F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr. Rheumatol. Rep.16, 451–451 (2014). PubMedPubMed Central Google Scholar
Houard, X., Goldring, M. B. & Berenbaum, F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr. Rheumatol. Rep.15, 375–375 (2013). PubMedPubMed Central Google Scholar
Millward-Sadler, S. J. & Salter, D. M. Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann. Biomed. Engineer.32, 435–446 (2004). CAS Google Scholar
Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum.64, 1697–1707 (2012). PubMedPubMed Central Google Scholar
Yusuf, E. et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann. Rheum. Dis.69, 761–765 (2010). PubMed Google Scholar
Visser, A. W. et al. The relative contribution of mechanical stress and systemic processes in different types of osteoarthritis: the NEO study. Ann. Rheum. Dis.74, 1842–1847 (2015). CASPubMed Google Scholar
Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature542, 177–185 (2017). CASPubMed Google Scholar
Berenbaum, F., Eymard, F. & Houard, X. Osteoarthritis, inflammation and obesity. Curr. Opin. Rheumatol.25, 114–118 (2013). CASPubMed Google Scholar
Griffin, T. M., Huebner, J. L., Kraus, V. B. & Guilak, F. Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheum.60, 2935–2944 (2009). CASPubMedPubMed Central Google Scholar
Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage21, 16–21 (2013). CASPubMed Google Scholar
Francisco, V. et al. Biomechanics, obesity, and osteoarthritis. The role of adipokines: when the levee breaks. J. Orthop. Res.36, 594–604 (2018). CASPubMed Google Scholar
Eckel, R. H., Grundy, S. M. & Zimmet, P. Z. The metabolic syndrome. Lancet365, 1415–1428 (2005). CASPubMed Google Scholar
Kaplan, H. et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet389, 1730–1739 (2017). PubMedPubMed Central Google Scholar
Kaminer, B. & Lutz, W. P. Blood pressure in Bushmen of the Kalahari Desert. Circulation22, 289–295 (1960). CASPubMed Google Scholar
Raichlen, D. A. et al. Physical activity patterns and biomarkers of cardiovascular disease risk in hunter-gatherers. Am. J. Hum. Biol.29, e22919 (2017). Google Scholar
Moore, J. X., Chaudhary, N. & Akinyemiju, T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chron. Dis.14, E24 (2017). Google Scholar
Berenbaum, F., Griffin, T. M. & Liu-Bryan, R. Metabolic regulation of inflammation in osteoarthritis. Arthritis Rheumatol.69, 9–21 (2017). PubMedPubMed Central Google Scholar
Zhuo, Q., Yang, W., Chen, J. & Wang, Y. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol.8, 729 (2012). CASPubMed Google Scholar
Rosa, S. C. et al. Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage. Arthritis Res. Ther.11, R80 (2009). PubMedPubMed Central Google Scholar
Rosa, S. C. et al. Role of glucose as a modulator of anabolic and catabolic gene expression in normal and osteoarthritic human chondrocytes. J. Cell. Biochem.112, 2813–2824 (2011). CASPubMed Google Scholar
Vaamonde-Garcia, C. et al. The nuclear factor-erythroid 2-related factor/heme oxygenase-1 axis is critical for the inflammatory features of type 2 diabetes-associated osteoarthritis. J. Biol. Chem.292, 14505–14515 (2017). CASPubMedPubMed Central Google Scholar
Berenbaum, F. Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype. Ann. Rheum. Dis.70, 1354–1356 (2011). PubMed Google Scholar
Shane Anderson, A. & Loeser, R. F. Why is osteoarthritis an age-related disease? Best practice and research. Clin. Rheumatol.24, 15–26 (2010). CAS Google Scholar
Steenvoorden, M. M. et al. Activation of receptor for advanced glycation end products in osteoarthritis leads to increased stimulation of chondrocytes and synoviocytes. Arthritis Rheum.54, 253–263 (2006). CASPubMed Google Scholar
de Munter, W., van der Kraan, P. M., van den Berg, W. B. & van Lent, P. L. High systemic levels of low-density lipoprotein cholesterol: fuel to the flames in inflammatory osteoarthritis? Rheumatology55, 16–24 (2016). PubMed Google Scholar
Conaghan, P. G., Vanharanta, H. & Dieppe, P. A. Is progressive osteoarthritis an atheromatous vascular disease? Ann. Rheum. Dis.64, 1539–1541 (2005). CASPubMedPubMed Central Google Scholar
Niu, J., Clancy, M., Aliabadi, P., Vasan, R. & Felson, D. T. Metabolic syndrome, its components, and knee osteoarthritis: The Framingham Osteoarthritis Study. Arthritis Rheumatol.69, 1194–1203 (2017). PubMedPubMed Central Google Scholar
Louati, K., Vidal, C., Berenbaum, F. & Sellam, J. Association between diabetes mellitus and osteoarthritis: systematic literature review and meta-analysis. RMD Open1, e000077 (2015). PubMedPubMed Central Google Scholar
Neumann, J. et al. Type 2 diabetes patients have accelerated cartilage matrix degeneration compared to diabetes free controls: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage26, 751–761 (2018). CASPubMedPubMed Central Google Scholar
Ruiz-Nunez, B., Pruimboom, L., Dijck-Brouwer, D. A. & Muskiet, F. A. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. J. Nutr. Biochem.24, 1183–1201 (2013). CASPubMed Google Scholar
Lepetsos, P. & Papavassiliou, A. G. ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta1862, 576–591 (2016). Google Scholar
Simopoulos, A. P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients8, 128 (2016). PubMedPubMed Central Google Scholar
Wu, C. L. et al. Dietary fatty acid content regulates wound repair and the pathogenesis of osteoarthritis following joint injury. Ann. Rheum. Dis.74, 2076–2083 (2015). CASPubMed Google Scholar
Cai, A. et al. Metabolic enrichment of omega-3 polyunsaturated fatty acids does not reduce the onset of idiopathic knee osteoarthritis in mice. Osteoarthritis Cartilage22, 1301–1309 (2014). CASPubMedPubMed Central Google Scholar
Senftleber, N. et al. Marine oil supplements for arthritis pain: a systematic review and meta-analysis of randomized trials. Nutrients9, 42 (2017). PubMed Central Google Scholar
Hill, C. L. et al. Fish oil in knee osteoarthritis: a randomised clinical trial of low dose versus high dose. Ann. Rheum. Dis.75, 23–29 (2016). CASPubMed Google Scholar
Davidson, R. K. et al. Sulforaphane represses matrix-degrading proteases and protects cartilage from destruction in vitro and in vivo. Arthritis Rheum.65, 3130–3140 (2013). CASPubMedPubMed Central Google Scholar
Berenbaum, F. Does broccoli protect from osteoarthritis? Joint Bone Spine81, 284–286 (2014). PubMed Google Scholar
Davidson, R. et al. Isothiocyanates are detected in human synovial fluid following broccoli consumption and can affect the tissues of the knee joint. Sci. Rep.7, 3398 (2017). PubMedPubMed Central Google Scholar
McAlindon, T. E. et al. Do antioxidant micronutrients protect against the development and progression of knee osteoarthritis? Arthritis Rheum.39, 648–656 (1996). CASPubMed Google Scholar
Sanghi, D. et al. Elucidation of dietary risk factors in osteoarthritis knee — a case-control study. J. Am. College Nutr.34, 15–20 (2015). CAS Google Scholar
Peregoy, J. & Wilder, F. V. The effects of vitamin C supplementation on incident and progressive knee osteoarthritis: a longitudinal study. Publ. Health Nutr.14, 709–715 (2011). Google Scholar
Chaganti, R. K. et al. High plasma levels of vitamin C and E are associated with incident radiographic knee osteoarthritis. Osteoarthritis Cartilage22, 190–196 (2014). CASPubMed Google Scholar
Kraus, V. B. et al. Ascorbic acid increases the severity of spontaneous knee osteoarthritis in a guinea pig model. Arthritis Rheum.50, 1822–1831 (2004). CASPubMed Google Scholar
Misra, D. et al. Vitamin K deficiency is associated with incident knee osteoarthritis. Am. J. Med.126, 243–248 (2013). CASPubMedPubMed Central Google Scholar
Neogi, T. et al. Low vitamin K status is associated with osteoarthritis in the hand and knee. Arthritis Rheum.54, 1255–1261 (2006). CASPubMed Google Scholar
Shea, M. K. et al. The association between vitamin K status and knee osteoarthritis features in older adults: the Health, Aging and Body Composition Study. Osteoarthritis Cartilage23, 370–378 (2015). CASPubMed Google Scholar
Datta, P. et al. High-fat diet-induced acceleration of osteoarthritis is associated with a distinct and sustained plasma metabolite signature. Sci. Rep.7, 8205 (2017). PubMedPubMed Central Google Scholar
Mooney, R. A., Sampson, E. R., Lerea, J., Rosier, R. N. & Zuscik, M. J. High-fat diet accelerates progression of osteoarthritis after meniscal/ligamentous injury. Arthritis Res. Ther.13, R198 (2011). CASPubMedPubMed Central Google Scholar
Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature500, 541–546 (2013). PubMed Google Scholar
Biagi, E. et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLOS ONE5, e10667 (2010). PubMedPubMed Central Google Scholar
Conlon, M. A. & Bird, A. R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients7, 17–44 (2015). Google Scholar
Brahe, L. K., Astrup, A. & Larsen, L. H. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes. Rev.14, 950–959 (2013). CASPubMed Google Scholar
Russell, W. R., Hoyles, L., Flint, H. J. & Dumas, M. E. Colonic bacterial metabolites and human health. Curr. Opin. Microbiol.16, 246–254 (2013). CASPubMed Google Scholar
Boulange, C. L., Neves, A. L., Chilloux, J., Nicholson, J. K. & Dumas, M. E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med.8, 42 (2016). PubMedPubMed Central Google Scholar
Huang, Z. & Kraus, V. B. Does lipopolysaccharide-mediated inflammation have a role in OA? Nat. Rev. Rheumatol.12, 123–129 (2016). CASPubMed Google Scholar
Collins, K. H. et al. Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model. Osteoarthritis Cartilage23, 1989–1998 (2015). CASPubMed Google Scholar
Dai, Z., Lu, N., Niu, J., Felson, D. T. & Zhang, Y. Dietary fiber intake in relation to knee pain trajectory. Arthritis Care Res.69, 1331–1339 (2017). CAS Google Scholar
Dai, Z., Niu, J., Zhang, Y., Jacques, P. & Felson, D. T. Dietary intake of fibre and risk of knee osteoarthritis in two US prospective cohorts. Ann. Rheum. Dis.76, 1411–1419 (2017). CASPubMed Google Scholar
Palmieri-Smith, R. M. et al. The role of athletic trainers in preventing and managing posttraumatic osteoarthritis in physically active populations: a consensus statement of the Athletic Trainers’ Osteoarthritis Consortium. J. Athlet. Train.52, 610–623 (2017). Google Scholar
Shaw, C. N. & Stock, J. T. Extreme mobility in the Late Pleistocene? Comparing limb biomechanics among fossil Homo, varsity athletes and Holocene foragers. J. Hum. Evol.64, 242–249 (2013). PubMed Google Scholar
Berger, T. D. & Trinkaus, E. Patterns of trauma among the Neandertals. J. Archaeol. Sci.22, 841–852 (1995). Google Scholar
Hallal, P. C. et al. Global physical activity levels: surveillance progress, pitfalls and prospects. Lancet380, 247–257 (2012). PubMed Google Scholar
Jacka, F. N. et al. Lower levels of physical activity in childhood associated with adult depression. J. Sci. Med. Sport14, 222–226 (2011). CASPubMed Google Scholar
Arsenis, N. C., You, T., Ogawa, E. F., Tinsley, G. M. & Zuo, L. Physical activity and telomere length: impact of aging and potential mechanisms of action. Oncotarget8, 45008–45019 (2017). PubMedPubMed Central Google Scholar
Weibel, E. R., Taylor, C. R. & Hoppeler, H. The concept of symmorphosis: a testable hypothesis of structure-function relationship. Proc. Natl Acad. Sci. USA88, 10357–10361 (1991). CASPubMedPubMed Central Google Scholar
Roos, E. M. & Arden, N. K. Strategies for the prevention of knee osteoarthritis. Nat. Rev. Rheumatol.12, 92–101 (2016). CASPubMed Google Scholar
Slemenda, C. et al. Quadriceps weakness and osteoarthritis of the knee. Ann. Intern. Med.127, 97–104 (1997). CASPubMed Google Scholar
Vanwanseele, B., Eckstein, F., Knecht, H., Spaepen, A. & Stussi, E. Longitudinal analysis of cartilage atrophy in the knees of patients with spinal cord injury. Arthritis Rheum.48, 3377–3381 (2003). CASPubMed Google Scholar
Vanwanseele, B., Eckstein, F., Knecht, H., Stüssi, E. & Spaepen, A. Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement. Arthritis Rheum.46, 2073–2078 (2002). CASPubMed Google Scholar
Urquhart, D. M. et al. What is the effect of physical activity on the knee joint? A systematic review. Med. Sci. Sports Exerc.43, 432–442 (2011). PubMed Google Scholar
Jones, G. et al. Knee articular cartilage development in children: a longitudinal study of the effect of sex, growth, body composition, and physical activity. Pediatr. Res.54, 230–236 (2003). PubMed Google Scholar
Racunica, T. L. et al. Effect of physical activity on articular knee joint structures in community-based adults. Arthritis Rheum.57, 1261–1268 (2007). PubMed Google Scholar
Leong, D. J. et al. Matrix metalloproteinase-3 in articular cartilage is upregulated by joint immobilization and suppressed by passive joint motion. Matrix Biol.29, 420–426 (2010). CASPubMedPubMed Central Google Scholar
Nomura, M. et al. Thinning of articular cartilage after joint unloading or immobilization. An experimental investigation of the pathogenesis in mice. Osteoarthritis Cartilage25, 727–736 (2017). CASPubMed Google Scholar
Paukkonen, K., Jurvelin, J. & Helminen, H. J. Effects of immobilization on the articular cartilage in young rabbits. A quantitative light microscopic stereological study. Clin. Orthop. Relat. research, 270–280 (1986).
Campbell, T. M., Reilly, K., Laneuville, O., Uhthoff, H. & Trudel, G. Bone replaces articular cartilage in the rat knee joint after prolonged immobilization. Bone106, 42–51 (2018). CASPubMed Google Scholar
Bricca, A., Juhl, C. B., Grodzinsky, A. J. & Roos, E. M. Impact of a daily exercise dose on knee joint cartilage — a systematic review and meta-analysis of randomized controlled trials in healthy animals. Osteoarthritis Cartilage25, 1223–1237 (2017). CASPubMed Google Scholar
Teichtahl, A. J. et al. The interaction between physical activity and amount of baseline knee cartilage. Rheumatology55, 1277–1284 (2016). PubMed Google Scholar
Arokoski, J. P., Jurvelin, J. S., Vaatainen, U. & Helminen, H. J. Normal and pathological adaptations of articular cartilage to joint loading. Scand. J. Med. Sci. Sports10, 186–198 (2000). CASPubMed Google Scholar