Insect egg size and shape evolve with ecology but not developmental rate (original) (raw)
References
Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, 1983).
Allen, R. M., Buckley, Y. M. & Marshall, D. J. Offspring size plasticity in response to intraspecific competition: an adaptive maternal effect across life-history stages. Am. Nat. 171, 225–237 (2008). Article Google Scholar
Blanckenhorn, W. U. The evolution of body size: what keeps organisms small? Q. Rev. Biol. 75, 385–407 (2000). ArticleCAS Google Scholar
Kingsolver, J. G. & Pfennig, D. W. Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution58, 1608–1612 (2004). Article Google Scholar
Stanley, S. M. An explanation for Cope’s rule. Evolution27, 1–26 (1973). Article Google Scholar
LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Annu. Rev. Ecol. Syst. 20, 97–117 (1989). Article Google Scholar
Chown, S. L. & Gaston, K. J. Body size variation in insects: a macroecological perspective. Biol. Rev. Camb. Philos. Soc. 85, 139–169 (2010). Article Google Scholar
Hinton, H. E. Biology of Insect Eggs vols I–III (Pergammon, 1981).
Thompson, D. W. On Growth and Form (Cambridge Univ. Press, 1917).
Fox, C. W. & Czesak, M. E. Evolutionary ecology of progeny size in arthropods. Annu. Rev. Entomol. 45, 341–369 (2000). ArticleCAS Google Scholar
Berrigan, D. The allometry of egg size and number in insects. Oikos60, 313–321 (1991). Article Google Scholar
García-Barros, E. Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). Biol. J. Linn. Soc. 70, 251–284 (2000). Article Google Scholar
Stoddard, M. C. et al. Avian egg shape: form, function, and evolution. Science356, 1249–1254 (2017). ArticleADSCAS Google Scholar
Bernardo, J. The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. Am. Zool. 36, 216–236 (1996). Article Google Scholar
Hinton, H. E. Respiratory systems of insect egg shells. Annu. Rev. Entomol. 14, 343–368 (1969). ArticleCAS Google Scholar
Legay, J. M. Allometry and systematics of insect egg form. J. Nat. Hist. 11, 493–499 (1977). Article Google Scholar
Blackburn, T. Evidence for a ‘fast-slow’ continuum of life-history traits among parasitoid Hymenoptera. Funct. Ecol. 5, 65–74 (1991). Article Google Scholar
Kratochvíl, L. & Frynta, D. Egg shape and size allometry in geckos (Squamata: Gekkota), lizards with contrasting eggshell structure: why lay spherical eggs? J. Zoological Syst. Evol. Res. 44, 217–222 (2006). Article Google Scholar
Bilder, D. & Haigo, S. L. Expanding the morphogenetic repertoire: perspectives from the Drosophila egg. Dev. Cell22, 12–23 (2012). ArticleCAS Google Scholar
Steele, D. & Steele, V. Egg size and duration of embryonic development in Crustacea. Int. Rev. Gesamten Hydrobiol. Hydrograph. 60, 711–715 (1975). Article Google Scholar
Sargent, R. C., Taylor, P. D. & Gross, M. R. Parental care and the evolution of egg size in fishes. Am. Nat. 129, 32–46 (1987). Article Google Scholar
Maino, J. L. & Kearney, M. R. Ontogenetic and interspecific metabolic scaling in insects. Am. Nat. 184, 695–701 (2014). Article Google Scholar
Iwata, K. & Sakagami, S. F. Gigantism and dwarfism in bee eggs in relation to the modes of life, with notes on the number of ovarioles. Jap. J. Ecol. 16, 4–16 (1966). Google Scholar
Church, S. H., Donoughe, S. D., de Medeiros, B. A. S. & Extavour, C. G. A dataset of egg size and shape from more than 6,700 insect species. Sci. Datahttps://doi.org/10.1038/s41597019–0049-y (2019).
Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science346, 763–767 (2014). ArticleADSCAS Google Scholar
Rainford, J. L., Hofreiter, M., Nicholson, D. B. & Mayhew, P. J. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS ONE9, e109085 (2014). ArticleADS Google Scholar
Leiby, R. & Hill, C. The polyembryonic development of Platygaster vernalis. J. Agric. Res. 28, 829–839 (1924). Google Scholar
Houston, T. F. Brood cells, life-cycle stages and development of some earth-borer beetles in the genera Bolborhachium, Blackburnium and Bolboleaus (Coleoptera: Geotrupidae), with notes on captive rearing and a discussion of larval diet. Aust. Entomol. 55, 49–62 (2016). ArticleMathSciNet Google Scholar
Goldberg, J. et al. Extreme convergence in egg-laying strategy across insect orders. Sci. Rep. 5, 7825 (2015). ArticleCAS Google Scholar
Harmon, L. J. et al. Early bursts of body size and shape evolution are rare in comparative data. Evolution64, 2385–2396 (2010). PubMed Google Scholar
Uyeda, J. C., Hansen, T. F., Arnold, S. J. & Pienaar, J. The million-year wait for macroevolutionary bursts. Proc. Natl Acad. Sci. USA108, 15908–15913 (2011). ArticleADSCAS Google Scholar
Cooper, N. & Purvis, A. Body size evolution in mammals: complexity in tempo and mode. Am. Nat. 175, 727–738 (2010). Article Google Scholar
Peters, R. H. & Wassenberg, K. The effect of body size on animal abundance. Oecologia60, 89–96 (1983). ArticleADS Google Scholar
Sieg, A. E. et al. Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter? Am. Nat. 174, 720–733 (2009). Article Google Scholar
Polilov, A. A. Small is beautiful: features of the smallest insects and limits to miniaturization. Annu. Rev. Entomol. 60, 103–121 (2015). ArticleCAS Google Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science293, 2248–2251 (2001). ArticleADSCAS Google Scholar
Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985). Article Google Scholar
Rensch, B. Histological changes correlated with evolutionary changes of body size. Evolution2, 218–230 (1948). ArticleCAS Google Scholar
Rainford, J. L., Hofreiter, M. & Mayhew, P. J. Phylogenetic analyses suggest that diversification and body size evolution are independent in insects. BMC Evol. Biol. 16, 8 (2016). Article Google Scholar
Gregory, T. R. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. Camb. Philos. Soc. 76, 65–101 (2001). ArticleCAS Google Scholar
Roff, D. A. The evolution of flightlessness in insects. Ecol. Monogr. 60, 389–421 (1990). Article Google Scholar
Whiting, M. F., Bradler, S. & Maxwell, T. Loss and recovery of wings in stick insects. Nature421, 264–267 (2003). ArticleADSCAS Google Scholar
Trueman, J., Pfeil, B., Kelchner, S. & Yeates, D. Did stick insects really regain their wings? Syst. Entomol. 29, 138–139 (2004). Article Google Scholar
Stancă-Moise, C. et al. Migratory species of butterflies in the surroundings of Sibiu (Romania). Sci. Pap. Ser. Manage. Econ. Eng. Agric. Rural Dev. 16, 319–324 (2016). Google Scholar
Ivanova-Kasas, O. M. in Developmental Systems: Insects vol. 1 (eds Counce, S. J. & Waddington, C. H.) Ch. 5, 243–271 (Academic, 1972).
Cooper, N., Thomas, G. H., Venditti, C., Meade, A. & Freckleton, R. P. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol. J. Linn. Soc. 118, 64–77 (2016). Article Google Scholar
Nieves-Uribe, S., Flores-Gallardo, A., Hernández-Mejía, B. C. & Llorente-Bousquets, J. Exploración morfológica del corion en Biblidinae (Lepidoptera: Nymphalidae): aspectos filogenéticos y clasificatorios. Southwest. Entomol. 40, 589–648 (2015). Article Google Scholar
Barata, J. M. S. Morphological aspects of Triatominae eggs. II. Macroscopic and exochorial characteristics of ten species of the genus Rhodnius Stal, 1859 (Hemiptera - Reduviidae) (in Portuguese). Rev. Saude Publica15, 490–542 (1981). ArticleCAS Google Scholar
Iwata, K. The comparative anatomy of the ovary in Hymenoptera (records on 64 species of Aculeata in Thailand, with descriptions of ovarian eggs). Mushi38, 101–109 (1965). Google Scholar
Dutra, V. S., Ronchi-Teles, B., Steck, G. J. & Silva, J. G. Egg morphology of Anastrepha spp. (Diptera: Tephritidae) in the fraterculus group using scanning electron microscopy. Ann. Entomol. Soc. Am. 104, 16–24 (2011). Article Google Scholar
Patterson, D., Mozzherin, D., Shorthouse, D. P. & Thessen, A. Challenges with using names to link digital biodiversity information. Biodivers. Data J. 4, e8080 (2016). Article Google Scholar
Pyle, R. L. Towards a global names architecture: the future of indexing scientific names. ZooKeys550, 261–281 (2016). Article Google Scholar
Rees, J. A. & Cranston, K. Automated assembly of a reference taxonomy for phylogenetic data synthesis. Biodivers. Data J. 5, e12581 (2017). Article Google Scholar
Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA112, 12764–12769 (2015). ArticleADSCAS Google Scholar
Clark, J. The capitulum of phasmid eggs (Insecta: Phasmida). Zool. J. Linn. Soc. 59, 365–375 (1976). Article Google Scholar
Markow, T. A., Beall, S. & Matzkin, L. M. Egg size, embryonic development time and ovoviviparity in Drosophila species. J. Evol. Biol. 22, 430–434 (2009). ArticleCAS Google Scholar
Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017). Article Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013). ArticleCAS Google Scholar
Yilmaz, P. et al. The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014). ArticleCAS Google Scholar
Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28, 1823–1829 (2012). ArticleCAS Google Scholar
Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018). Article Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature491, 444–448 (2012). ArticleADSCAS Google Scholar
Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012). Article Google Scholar
Maino, J. L., Pirtle, E. I. & Kearney, M. R. The effect of egg size on hatch time and metabolic rate: theoretical and empirical insights on developing insect embryos. Funct. Ecol. 31, 227–234 (2017). Article Google Scholar
Beaulieu, J. M., O’Meara, B. C. & Donoghue, M. J. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Syst. Biol. 62, 725–737 (2013). Article Google Scholar
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics24, 129–131 (2008). ArticleCAS Google Scholar
Pennell, M. W., FitzJohn, R. G., Cornwell, W. K. & Harmon, L. J. Model adequacy and the macroevolution of angiosperm functional traits. Am. Nat. 186, E33–E50 (2015). Article Google Scholar
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012). Article Google Scholar
Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE9, e89543 (2014). ArticleADS Google Scholar
Rabosky, D. L. et al. Bamm tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014). Article Google Scholar
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics20, 289–290 (2004). ArticleCAS Google Scholar
Revell, L. J. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329 (2010). Article Google Scholar
Tung Ho, L. s. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014). Article Google Scholar
Beaulieu, J. M., Jhwueng, D.-C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution66, 2369–2383 (2012). Article Google Scholar