Insect egg size and shape evolve with ecology but not developmental rate (original) (raw)

References

  1. Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, 1983).
  2. Allen, R. M., Buckley, Y. M. & Marshall, D. J. Offspring size plasticity in response to intraspecific competition: an adaptive maternal effect across life-history stages. Am. Nat. 171, 225–237 (2008).
    Article Google Scholar
  3. Blanckenhorn, W. U. The evolution of body size: what keeps organisms small? Q. Rev. Biol. 75, 385–407 (2000).
    Article CAS Google Scholar
  4. Kingsolver, J. G. & Pfennig, D. W. Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution 58, 1608–1612 (2004).
    Article Google Scholar
  5. Stanley, S. M. An explanation for Cope’s rule. Evolution 27, 1–26 (1973).
    Article Google Scholar
  6. LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Annu. Rev. Ecol. Syst. 20, 97–117 (1989).
    Article Google Scholar
  7. Chown, S. L. & Gaston, K. J. Body size variation in insects: a macroecological perspective. Biol. Rev. Camb. Philos. Soc. 85, 139–169 (2010).
    Article Google Scholar
  8. Hinton, H. E. Biology of Insect Eggs vols I–III (Pergammon, 1981).
  9. Thompson, D. W. On Growth and Form (Cambridge Univ. Press, 1917).
  10. Fox, C. W. & Czesak, M. E. Evolutionary ecology of progeny size in arthropods. Annu. Rev. Entomol. 45, 341–369 (2000).
    Article CAS Google Scholar
  11. Berrigan, D. The allometry of egg size and number in insects. Oikos 60, 313–321 (1991).
    Article Google Scholar
  12. García-Barros, E. Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). Biol. J. Linn. Soc. 70, 251–284 (2000).
    Article Google Scholar
  13. Stoddard, M. C. et al. Avian egg shape: form, function, and evolution. Science 356, 1249–1254 (2017).
    Article ADS CAS Google Scholar
  14. Bernardo, J. The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. Am. Zool. 36, 216–236 (1996).
    Article Google Scholar
  15. Hinton, H. E. Respiratory systems of insect egg shells. Annu. Rev. Entomol. 14, 343–368 (1969).
    Article CAS Google Scholar
  16. Legay, J. M. Allometry and systematics of insect egg form. J. Nat. Hist. 11, 493–499 (1977).
    Article Google Scholar
  17. Blackburn, T. Evidence for a ‘fast-slow’ continuum of life-history traits among parasitoid Hymenoptera. Funct. Ecol. 5, 65–74 (1991).
    Article Google Scholar
  18. Kratochvíl, L. & Frynta, D. Egg shape and size allometry in geckos (Squamata: Gekkota), lizards with contrasting eggshell structure: why lay spherical eggs? J. Zoological Syst. Evol. Res. 44, 217–222 (2006).
    Article Google Scholar
  19. Bilder, D. & Haigo, S. L. Expanding the morphogenetic repertoire: perspectives from the Drosophila egg. Dev. Cell 22, 12–23 (2012).
    Article CAS Google Scholar
  20. Steele, D. & Steele, V. Egg size and duration of embryonic development in Crustacea. Int. Rev. Gesamten Hydrobiol. Hydrograph. 60, 711–715 (1975).
    Article Google Scholar
  21. Sargent, R. C., Taylor, P. D. & Gross, M. R. Parental care and the evolution of egg size in fishes. Am. Nat. 129, 32–46 (1987).
    Article Google Scholar
  22. Maino, J. L. & Kearney, M. R. Ontogenetic and interspecific metabolic scaling in insects. Am. Nat. 184, 695–701 (2014).
    Article Google Scholar
  23. Iwata, K. & Sakagami, S. F. Gigantism and dwarfism in bee eggs in relation to the modes of life, with notes on the number of ovarioles. Jap. J. Ecol. 16, 4–16 (1966).
    Google Scholar
  24. Church, S. H., Donoughe, S. D., de Medeiros, B. A. S. & Extavour, C. G. A dataset of egg size and shape from more than 6,700 insect species. Sci. Data https://doi.org/10.1038/s41597019–0049-y (2019).
  25. Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
    Article ADS CAS Google Scholar
  26. Rainford, J. L., Hofreiter, M., Nicholson, D. B. & Mayhew, P. J. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS ONE 9, e109085 (2014).
    Article ADS Google Scholar
  27. Leiby, R. & Hill, C. The polyembryonic development of Platygaster vernalis. J. Agric. Res. 28, 829–839 (1924).
    Google Scholar
  28. Houston, T. F. Brood cells, life-cycle stages and development of some earth-borer beetles in the genera Bolborhachium, Blackburnium and Bolboleaus (Coleoptera: Geotrupidae), with notes on captive rearing and a discussion of larval diet. Aust. Entomol. 55, 49–62 (2016).
    Article MathSciNet Google Scholar
  29. Goldberg, J. et al. Extreme convergence in egg-laying strategy across insect orders. Sci. Rep. 5, 7825 (2015).
    Article CAS Google Scholar
  30. Harmon, L. J. et al. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64, 2385–2396 (2010).
    PubMed Google Scholar
  31. Uyeda, J. C., Hansen, T. F., Arnold, S. J. & Pienaar, J. The million-year wait for macroevolutionary bursts. Proc. Natl Acad. Sci. USA 108, 15908–15913 (2011).
    Article ADS CAS Google Scholar
  32. Cooper, N. & Purvis, A. Body size evolution in mammals: complexity in tempo and mode. Am. Nat. 175, 727–738 (2010).
    Article Google Scholar
  33. Peters, R. H. & Wassenberg, K. The effect of body size on animal abundance. Oecologia 60, 89–96 (1983).
    Article ADS Google Scholar
  34. Sieg, A. E. et al. Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter? Am. Nat. 174, 720–733 (2009).
    Article Google Scholar
  35. Polilov, A. A. Small is beautiful: features of the smallest insects and limits to miniaturization. Annu. Rev. Entomol. 60, 103–121 (2015).
    Article CAS Google Scholar
  36. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
    Article ADS CAS Google Scholar
  37. Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
    Article Google Scholar
  38. Rensch, B. Histological changes correlated with evolutionary changes of body size. Evolution 2, 218–230 (1948).
    Article CAS Google Scholar
  39. Rainford, J. L., Hofreiter, M. & Mayhew, P. J. Phylogenetic analyses suggest that diversification and body size evolution are independent in insects. BMC Evol. Biol. 16, 8 (2016).
    Article Google Scholar
  40. Gregory, T. R. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. Camb. Philos. Soc. 76, 65–101 (2001).
    Article CAS Google Scholar
  41. Gregory, T. R. Animal Genome Size Database. Release 2.0 http://www.genomesize.com (2019).
  42. Roff, D. A. The evolution of flightlessness in insects. Ecol. Monogr. 60, 389–421 (1990).
    Article Google Scholar
  43. Whiting, M. F., Bradler, S. & Maxwell, T. Loss and recovery of wings in stick insects. Nature 421, 264–267 (2003).
    Article ADS CAS Google Scholar
  44. Trueman, J., Pfeil, B., Kelchner, S. & Yeates, D. Did stick insects really regain their wings? Syst. Entomol. 29, 138–139 (2004).
    Article Google Scholar
  45. Stancă-Moise, C. et al. Migratory species of butterflies in the surroundings of Sibiu (Romania). Sci. Pap. Ser. Manage. Econ. Eng. Agric. Rural Dev. 16, 319–324 (2016).
    Google Scholar
  46. Ivanova-Kasas, O. M. in Developmental Systems: Insects vol. 1 (eds Counce, S. J. & Waddington, C. H.) Ch. 5, 243–271 (Academic, 1972).
  47. Cooper, N., Thomas, G. H., Venditti, C., Meade, A. & Freckleton, R. P. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol. J. Linn. Soc. 118, 64–77 (2016).
    Article Google Scholar
  48. Nieves-Uribe, S., Flores-Gallardo, A., Hernández-Mejía, B. C. & Llorente-Bousquets, J. Exploración morfológica del corion en Biblidinae (Lepidoptera: Nymphalidae): aspectos filogenéticos y clasificatorios. Southwest. Entomol. 40, 589–648 (2015).
    Article Google Scholar
  49. Barata, J. M. S. Morphological aspects of Triatominae eggs. II. Macroscopic and exochorial characteristics of ten species of the genus Rhodnius Stal, 1859 (Hemiptera - Reduviidae) (in Portuguese). Rev. Saude Publica 15, 490–542 (1981).
    Article CAS Google Scholar
  50. Iwata, K. The comparative anatomy of the ovary in Hymenoptera (records on 64 species of Aculeata in Thailand, with descriptions of ovarian eggs). Mushi 38, 101–109 (1965).
    Google Scholar
  51. Dutra, V. S., Ronchi-Teles, B., Steck, G. J. & Silva, J. G. Egg morphology of Anastrepha spp. (Diptera: Tephritidae) in the fraterculus group using scanning electron microscopy. Ann. Entomol. Soc. Am. 104, 16–24 (2011).
    Article Google Scholar
  52. Patterson, D., Mozzherin, D., Shorthouse, D. P. & Thessen, A. Challenges with using names to link digital biodiversity information. Biodivers. Data J. 4, e8080 (2016).
    Article Google Scholar
  53. Pyle, R. L. Towards a global names architecture: the future of indexing scientific names. ZooKeys 550, 261–281 (2016).
    Article Google Scholar
  54. Rees, J. A. & Cranston, K. Automated assembly of a reference taxonomy for phylogenetic data synthesis. Biodivers. Data J. 5, e12581 (2017).
    Article Google Scholar
  55. Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).
    Article ADS CAS Google Scholar
  56. GBIF. GBIF: The Global Biodiversity Information Facility https://www.gbif.org/en/ (2018).
  57. Clark, J. The capitulum of phasmid eggs (Insecta: Phasmida). Zool. J. Linn. Soc. 59, 365–375 (1976).
    Article Google Scholar
  58. Markow, T. A., Beall, S. & Matzkin, L. M. Egg size, embryonic development time and ovoviviparity in Drosophila species. J. Evol. Biol. 22, 430–434 (2009).
    Article CAS Google Scholar
  59. Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).
    Article Google Scholar
  60. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
    Article CAS Google Scholar
  61. Yilmaz, P. et al. The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).
    Article CAS Google Scholar
  62. Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).
    Article CAS Google Scholar
  63. Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).
    Article Google Scholar
  64. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
    Article ADS CAS Google Scholar
  65. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    Article Google Scholar
  66. Maino, J. L., Pirtle, E. I. & Kearney, M. R. The effect of egg size on hatch time and metabolic rate: theoretical and empirical insights on developing insect embryos. Funct. Ecol. 31, 227–234 (2017).
    Article Google Scholar
  67. Beaulieu, J. M., O’Meara, B. C. & Donoghue, M. J. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Syst. Biol. 62, 725–737 (2013).
    Article Google Scholar
  68. Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).
    Article CAS Google Scholar
  69. Pennell, M. W., FitzJohn, R. G., Cornwell, W. K. & Harmon, L. J. Model adequacy and the macroevolution of angiosperm functional traits. Am. Nat. 186, E33–E50 (2015).
    Article Google Scholar
  70. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Article Google Scholar
  71. Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).
    Article ADS Google Scholar
  72. Rabosky, D. L. et al. Bamm tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).
    Article Google Scholar
  73. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    Article CAS Google Scholar
  74. Pinheiro, J. et al. nlme: linear and nonlinear mixed effects models. R package version 3.1-117 https://cran.r-project.org/web/packages/nlme/index.html (2014).
  75. Revell, L. J. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329 (2010).
    Article Google Scholar
  76. Tung Ho, L. s. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).
    Article Google Scholar
  77. Beaulieu, J. M., Jhwueng, D.-C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 66, 2369–2383 (2012).
    Article Google Scholar

Download references