Isolation and characterization of extracellular vesicle subpopulations from tissues (original) (raw)
Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol.9, 654–659 (2007). ArticleCASPubMed Google Scholar
Xiao, H. et al. Mast cell exosomes promote lung adenocarcinoma cell proliferation—role of KIT-stem cell factor signaling. Cell Commun. Signal.12, 64 (2014). PubMedPubMed Central Google Scholar
Colombo, M., Raposo, G. & Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol.30, 255–289 (2014). ArticleCASPubMed Google Scholar
Kim, C. W. et al. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res.62, 6312–6317 (2002). CASPubMed Google Scholar
Al-Nedawi, K. & Read, J. Analysis of extracellular vesicles in the tumor microenvironment. Methods Mol. Biol.1458, 195–202 (2016). ArticleCASPubMed Google Scholar
Ji, Q. et al. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat. Commun.11, 1211 (2020). ArticleCASPubMedPubMed Central Google Scholar
Nishida-Aoki, N. et al. Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Mol. Ther.25, 181–191 (2017). ArticleCASPubMedPubMed Central Google Scholar
Gangadaran, P., Hong, C. M. & Ahn, B. C. An update on in vivo imaging of extracellular vesicles as drug delivery vehicles. Front. Pharmacol.9, 169 (2018). ArticlePubMedPubMed Central Google Scholar
Luga, V. et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell151, 1542–1556 (2012). ArticleCASPubMed Google Scholar
Atay, S. et al. Oncogenic KIT-containing exosomes increase gastrointestinal stromal tumor cell invasion. Proc. Natl Acad. Sci. U. S. A.111, 711–716 (2014). ArticleCASPubMed Google Scholar
Qu, J. L. et al. Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig. Liver Dis.41, 875–880 (2009). ArticleCASPubMed Google Scholar
Urabe, F. et al. Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am. J. Physiol. Cell Physiol.318, C29–C39 (2020). ArticleCASPubMed Google Scholar
Crescitelli, R. et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles2, 1 (2013). Article Google Scholar
Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. U. S. A.113, E968–E977 (2016). ArticleCASPubMedPubMed Central Google Scholar
Lässer, C. et al. Two distinct extracellular RNA signatures released by a single cell type identified by microarray and next-generation sequencing. RNA Biol.14, 58–72 (2017). ArticlePubMed Google Scholar
Willms, E. et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep.6, 22519 (2016). ArticleCASPubMedPubMed Central Google Scholar
Lässer, C. et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J. Transl. Med.9, 9 (2011). ArticlePubMedPubMed Central Google Scholar
Keller, S., Ridinger, J., Rupp, A. K., Janssen, J. W. & Altevogt, P. Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl. Med.9, 86 (2011). ArticleCASPubMedPubMed Central Google Scholar
Höög, J. L. & Lötvall, J. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J. Extracell. Vesicles4, 28680 (2015). ArticlePubMed Google Scholar
Domcke, S., Sinha, R., Levine, D. A., Sander, C. & Schultz, N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun.4, 2126 (2013). ArticlePubMed Google Scholar
Chen, B., Sirota, M., Fan-Minogue, H., Hadley, D. & Butte, A. J. Relating hepatocellular carcinoma tumor samples and cell lines using gene expression data in translational research. BMC Med. Genomics8,, S5 (2015). Article Google Scholar
Allen, M., Bjerke, M., Edlund, H., Nelander, S. & Westermark, B. Origin of the U87MG glioma cell line: good news and bad news. Sci. Transl. Med.8, 354re353 (2016). Article Google Scholar
Perez-Gonzalez, R., Gauthier, S. A., Kumar, A. & Levy, E. The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J. Biol. Chem.287, 43108–43115 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gallart-Palau, X., Serra, A. & Sze, S. K. Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR. Mol. Neurodegener.11, 41 (2016). ArticlePubMedPubMed Central Google Scholar
Hurwitz, S. N. et al. An optimized method for enrichment of whole brain-derived extracellular vesicles reveals insight into neurodegenerative processes in a mouse model of Alzheimer’s disease. J. Neurosci. Methods307, 210–220 (2018). ArticleCASPubMedPubMed Central Google Scholar
Hurwitz, S. N., Olcese, J. M. & Meckes, D. G., Jr. Extraction of extracellular vesicles from whole tissue. J. Vis. Exp. (144), e59143 (2019).
Huang, Y. et al. Influence of species and processing parameters on recovery and content of brain tissue-derived extracellular vesicles. J. Extracell. Vesicles9, 1 (2020). Article Google Scholar
Yelamanchili, S. V. et al. MiR-21 in extracellular vesicles leads to neurotoxicity via TLR7 signaling in SIV neurological disease. PloS Pathog.11, e1005032 (2015). ArticlePubMedPubMed Central Google Scholar
Banigan, M. G. et al. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS One8, e48814 (2013). ArticleCASPubMedPubMed Central Google Scholar
Polanco, J. C., Scicluna, B. J., Hill, A. F. & Götz, J. Extracellular vesicles isolated from the brains of rTg4510 mice seed tau protein aggregation in a threshold-dependent manner. J. Biol. Chem.291, 12445–12466 (2016). ArticleCASPubMedPubMed Central Google Scholar
Jang, S. C. et al. Mitochondrial protein enriched extracellular vesicles discovered in human melanoma tissues can be detected in patient plasma. J. Extracell. Vesicles8, 1635420 (2019). ArticleCASPubMedPubMed Central Google Scholar
Crescitelli, R. et al. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J. Extracell. Vesicles9, 1722433 (2020). ArticleCASPubMedPubMed Central Google Scholar
Lunt, S. J., Chaudary, N. & Hill, R. P. The tumor microenvironment and metastatic disease. Clin. Exp. Metastasis26, 19–34 (2009). ArticlePubMed Google Scholar
Su, M.-J., Parayath, N. N. & Amiji, M. M. Exosome-mediated communication in the tumor microenvironment. In Diagnostic and Therapeutic Applications of Exosomes in Cancer (eds. Amiji, M. & Ramesh, R.) 187–218 (Academic Press, London, UK, 2018).
Skalnikova, H. K. et al. Isolation and characterization of small extracellular vesicles from porcine blood plasma, cerebrospinal fluid, and seminal plasma. Proteomes7, 17 (2019). ArticleCASPubMed Google Scholar
Carnino, J. M., Lee, H. & Jin, Y. Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: a review and comparison of different methods. Respir. Res.20, 240 (2019). ArticlePubMedPubMed Central Google Scholar
Monguió-Tortajada, M. et al. Extracellular-vesicle isolation from different biological fluids by size-exclusion chromatography. Curr. Protoc. Stem Cell Biol.49, e82 (2019). ArticlePubMed Google Scholar
Balaj, L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun.2, 180 (2011). ArticlePubMed Google Scholar
Steenbeek, S. C. et al. Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles. Embo J.37,, e98357 (2018). Article Google Scholar
Cianciaruso, C. et al. Molecular profiling and functional analysis of macrophage-derived tumor extracellular vesicles. Cell Rep.27, 3062–3080.e11 (2019). ArticleCASPubMedPubMed Central Google Scholar
Yousef, H., Czupalla, C. J., Lee, D., Butcher, E. C. & Wyss-Coray, T. Papain-based single cell isolation of primary murine brain endothelial cells using flow cytometry. Bio Protoc.8, e3091 (2018). ArticleCASPubMedPubMed Central Google Scholar
Angyal, A. et al. CD16/32-specific biotinylated 2.4G2 single-chain Fv complexed with avidin-FITC enhances FITC-specific humoral immune response in vivo in a CD16-dependent manner. Int. Immunol.22, 71–80 (2010). ArticleCASPubMed Google Scholar
Fan, Y. et al. Low intraprostatic DHT promotes the infiltration of CD8+ T cells in BPH tissues via modulation of CCL5 secretion. Mediators Inflamm.2014, 397815 (2014). ArticlePubMedPubMed Central Google Scholar
Benck, C. J., Martinov, T., Fife, B. T. & Chatterjea, D. Isolation of infiltrating leukocytes from mouse skin using enzymatic digest and gradient separation. J. Vis. Exp. (107), e53638 (2016).
Uchea, C., Owen, S. F. & Chipman, J. K. Functional xenobiotic metabolism and efflux transporters in trout hepatocyte spheroid cultures. Toxicol. Res. (Camb.)4, 494–507 (2015). ArticleCASPubMed Central Google Scholar
Autengruber, A., Gereke, M., Hansen, G., Hennig, C. & Bruder, D. Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. Eur. J. Microbiol. Immunol. (Bp2, 112–120 (2012).
Möller, K., Stahl, T., Boltze, J. & Wagner, D. C. Isolation of inflammatory cells from rat brain tissue after stroke. Exp. Transl. Stroke Med.4, 20 (2012). ArticlePubMedPubMed Central Google Scholar
Takeuchi, Y., Higuchi, K., Yatabe, T., Miwa, M. & Yoshizaki, G. Development of spermatogonial cell transplantation in Nibe croaker, Nibea mitsukurii (Perciformes, Sciaenidae). Biol. Reprod.81, 1055–1063 (2009). ArticleCASPubMed Google Scholar
Legroux, L. et al. An optimized method to process mouse CNS to simultaneously analyze neural cells and leukocytes by flow cytometry. J. Neurosci. Methods247, 23–31 (2015). ArticleCASPubMed Google Scholar
Berdnikovs, S., Abdala-Valencia, H. & Cook-Mills, J. M. Endothelial cell PTP1B regulates leukocyte recruitment during allergic inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol.304, L240–L249 (2013). ArticleCASPubMed Google Scholar
Filtjens, J. et al. Expression of the inhibitory Ly49E receptor is not critically involved in the immune response against cutaneous, pulmonary or liver tumours. Sci. Rep.6, 30564 (2016). ArticleCASPubMedPubMed Central Google Scholar
Welte, Y., Davies, C., Schäfer, R. & Regenbrecht, C. R. Patient derived cell culture and isolation of CD133+ putative cancer stem cells from melanoma. J. Vis. Exp. (73), e50200 (2013).
Dunleavey, J. M. et al. Vascular channels formed by subpopulations of PECAM1+ melanoma cells. Nat. Commun.5, 5200 (2014). ArticleCASPubMed Google Scholar
Quintana, E. et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell18, 510–523 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhou, J. et al. Colorectal cancer cell surface protein profiling using an antibody microarray and fluorescence multiplexing. J. Vis. Exp. (55), 3322 (2011).
Weigmann, B. et al. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nat. Protoc.2, 2307–2311 (2007). ArticleCASPubMed Google Scholar
Lunavat, T. R. et al. BRAFV600 inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells. Proc. Natl Acad. Sci. U. S. A.114, E5930–E5939 (2017). ArticleCASPubMedPubMed Central Google Scholar
Jeurissen, S. et al. The isolation of morphologically intact and biologically active extracellular vesicles from the secretome of cancer-associated adipose tissue. Cell Adh. Mig.r11, 196–204 (2017). ArticleCAS Google Scholar
Jingushi, K. et al. Extracellular vesicles isolated from human renal cell carcinoma tissues disrupt vascular endothelial cell morphology via azurocidin. Int. J. Cancer142, 607–617 (2018). ArticleCASPubMed Google Scholar
Van Deun, J. et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J. Extracell. Vesicles3, 1 (2014). Google Scholar
Chen, C., Lin, B. R., Hsu, M. Y. & Cheng, C. M. Paper-based devices for isolation and characterization of extracellular vesicles. J. Vis. Exp. (98), e52722 (2015).
Théry, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol.Chapter 3, Unit 3.22 (2006). PubMed Google Scholar
Konoshenko, M. Y., Lekchnov, E. A., Vlassov, A. V. & Laktionov, P. P. Isolation of extracellular vesicles: general methodologies and latest trends. Biomed. Res. Int.2018, 8545347 (2018). ArticlePubMedPubMed Central Google Scholar
Jang, S. C. et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano7, 7698–7710 (2013). ArticleCASPubMed Google Scholar
World MedicalAssociation. World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA310, 2191–2194 (2013). Article Google Scholar
Bæk, R., Søndergaard, E. K. L., Varming, K. & Jørgensen, M. M. The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. J. Immunol. Methods438, 11–20 (2016). ArticlePubMed Google Scholar
Yuana, Y. et al. Handling and storage of human body fluids for analysis of extracellular vesicles. J. Extracell. Vesicles4, 29260 (2015). ArticlePubMed Google Scholar
Virues Delgadillo, J., Delorme, S., El-Ayoubi, R., DiRaddo, R. & Hatzikiriakos, S. Effect of freezing on the passive mechanical properties of arterial samples. J. Biomed. Sci. Eng.3, 645–652 (2010). Article Google Scholar
Han, B. & Bischof, J. C. Engineering challenges in tissue preservation. Cell Preserv. Technol.2, 91–112 (2004). Article Google Scholar
Nayar, S., Campos, J., Steinthal, N. & Barone, F. Tissue digestion for stromal cell and leukocyte isolation. Methods Mol. Biol.1591, 225–234 (2017). ArticleCASPubMed Google Scholar
Kusuma, G. D. et al. To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Front Pharmacol9, 1199 (2018). ArticleCASPubMedPubMed Central Google Scholar
Jayachandran, M., Miller, V. M., Heit, J. A. & Owen, W. G. Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J. Immunol. Methods375, 207–214 (2012). ArticleCASPubMed Google Scholar
Szatanek, R., Baran, J., Siedlar, M. & Baj-Krzyworzeka, M. Isolation of extracellular vesicles: determining the correct approach (review). Int. J. Mol. Med.36, 11–17 (2015). ArticleCASPubMedPubMed Central Google Scholar
Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles7, 1535750 (2018). ArticlePubMedPubMed Central Google Scholar
Lunavat, T. R. et al. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells—evidence of unique microRNA cargos. RNA Biol.12, 810–823 (2015). ArticlePubMedPubMed Central Google Scholar
Cvjetkovic, A. et al. Detailed analysis of protein topology of extracellular vesicles—evidence of unconventional membrane protein orientation. Sci. Rep.6, 36338 (2016). ArticleCASPubMedPubMed Central Google Scholar
Tian, Y. et al. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J. Extracell. Vesicles9, 1697028 (2020). ArticleCASPubMed Google Scholar
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods6, 359–362 (2009). ArticlePubMed Google Scholar
McAlister, G. C. et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem.86, 7150–7158 (2014). ArticleCASPubMedPubMed Central Google Scholar
Kim, D.-K. et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J. Extracell. Vesicles2, 1 (2013). ArticleCAS Google Scholar
Keerthikumar, S. et al. ExoCarta: a web-based compendium of exosomal cargo. J. Mol. Biol.428, 688–692 (2016). ArticleCASPubMed Google Scholar
Kalra, H. et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol.10, e1001450 (2012). ArticleCASPubMedPubMed Central Google Scholar
Deutsch, E. W. et al. The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res.45, D1100–D1106 (2016). ArticlePubMedPubMed Central Google Scholar