Molecular signals in anti-apoptotic survival pathways (original) (raw)
Ashkenazi A, Dixit VM . Death receptors: signaling and modulation Science 1998 281: 1305–1308 CASPubMed Google Scholar
O'Connor R . Survival factors and apoptosis. In: Scheper T (ed) Advances in Biochemical Engineering/Biotechnologyvol. 62: Springer-Verlag: Heidelberg 1998 pp 137–166 Google Scholar
Zaman GJ, Flens MJ, van Leusden MR, de Haas M, Mulder HS, Lankelma J, Pinedo HM, Scheper RJ, Baas F, Broxterman HJ, Borst P . The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump Proc Natl Acad Sci USA 1994 91: 8822–8826 CASPubMedPubMed Central Google Scholar
Gottesman MM, Pastan I . Biochemistry of multidrug resistance mediated by the multidrug transporter Annu Rev Biochem 1993 62: 385–427 CASPubMed Google Scholar
Higgins CF . ABC transporters: from microorganisms to man Annu Rev Cell Biol 1992 8: 67–113 CASPubMed Google Scholar
Zaman GJ, Lankelma J, van Tellingen O, Beijnen J, Dekker H, Paulusma C, Oude Elferink RP, Baas F, Borst P . Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein Proc Natl Acad Sci USA 1995 92: 7690–7694 CASPubMedPubMed Central Google Scholar
McKenna SL, Padua RA . Multidrug resistance in leukaemia Br J Haematol 1997 96: 659–674 CASPubMed Google Scholar
McCormick F . Signal transduction. How receptors turn Ras on Nature 1993 363: 15–16 CASPubMed Google Scholar
Joneson T, Bar-Sagi D . Ras effectors and their role in mitogenesis and oncogenesis J Mol Med 1997 75: 587–593 CASPubMed Google Scholar
Downward J . Ras signalling and apoptosis Curr Opin Genet Dev 1998 8: 49–54 CASPubMed Google Scholar
Weijzen S, Velders MP, Kast WM . Modulation of the immune response and tumor growth by activated Ras Leukemia 1999 13: 502–513 CASPubMed Google Scholar
Quilliam LA, Huff SY, Rabun KM, Wei W, Park W, Broek D, Der CJ . Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and SOS1 activation of Ras transforming activity Proc Natl Acad Sci USA 1994 91: 8512–8516 CASPubMedPubMed Central Google Scholar
Wittinghofer A, Scheffzek K, Ahmadian MR . The interaction of Ras with GTPase-activating proteins FEBS Lett 1997 410: 63–67 CASPubMed Google Scholar
Bos JL . Ras oncogenes in human cancer: a review Cancer Res 1989 49: 4682–4689 CASPubMed Google Scholar
Friess H, Berberat P, Schilling M, Kunz J, Korc M, Buchler MW . Pancreatic cancer: the potential clinical relevance of alterations in growth factors and their receptors J Mol Med 1996 74: 35–42 CASPubMed Google Scholar
Castelli C, Sensi M, Lupetti R, Mortarini R, Panceri P, Anichini A, Parmiani G . Expression of interleukin 1 alpha, interleukin 6, and tumor necrosis factor alpha genes in human melanoma clones is associated with that of mutated N-RAS oncogene Cancer Res 1994 54: 4785–4790 CASPubMed Google Scholar
Demetri GD, Ernst TJ, Pratt ESd, Zenzie BW, Rheinwald JG, Griffin JD . Expression of ras oncogenes in cultured human cells alters the transcriptional and posttranscriptional regulation of cytokine genes J Clin Invest 1990 86: 1261–1269 CASPubMedPubMed Central Google Scholar
Thorn J, Molloy P, Iland H . SSCP detection of N-ras promoter mutations in AML patients Exp Hematol 1995 23: 1098–1103 CASPubMed Google Scholar
Goga A, McLaughlin J, Afar DE, Saffran DC, Witte ON . Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene Cell 1995 82: 981–988 CASPubMed Google Scholar
Padua RA . Molecular genetics of leukaemia. In: Whittaker JA (ed) Leukaemia2nd edn: Blackwell Scientific Publications: Oxford 1992 pp 123–150 Google Scholar
Byrne JL, Marshall CJ . The molecular pathophysiology of myeloid leukaemias: Ras revisited Br J Haematol 1998 100: 256–264 CASPubMed Google Scholar
Price CM, Marshall CJ, Bashey A . Sequential acquisition of trisomy 8 and N-ras mutation in acute myeloid leukaemia demonstrated by analysis of isolated leukaemic colonies Br J Haematol 1994 88: 338–342 CASPubMed Google Scholar
Gougopoulou DM, Kiaris H, Ergazaki M, Anagnostopoulos NI, Grigoraki V, Spandidos DA . Mutations and expression of the ras family genes in leukemias Stem Cells 1996 14: 725–729 CASPubMed Google Scholar
Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O'Hagan R, Pantginis J, Zhou H, Horner JWN, Cordon-Cardo C, Yancopoulos GD, DePinho RA . Essential role for oncogenic Ras in tumour maintenance Nature 1999 400: 468–472 CASPubMed Google Scholar
Lee YY, Kim WS, Bang YJ, Jung CW, Park S, Yoon WJ, Cho KS, Kim IS, Jung TJ, Cho IY, Kim BK, Kim NK, Koeffler HP . Analysis of mutations of neurofibromatosis type 1 gene and N-ras gene in acute myelogenous leukemia Stem Cells 1995 13: 556–563 CASPubMed Google Scholar
Kinoshita T, Yokota T, Arai K, Miyajima A . Regulation of Bcl-2 expression by oncogenic Ras protein in hematopoietic cells Oncogene 1995 10: 2207–2212 CASPubMed Google Scholar
Adams JM, Cory S . The Bcl-2 protein family: arbiters of cell survival Science 1998 281: 1322–1326 CASPubMed Google Scholar
Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP, Guyotat D . High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy Blood 1993 81: 3091–3096 CASPubMed Google Scholar
Delia D, Aiello A, Soligo D, Fontanella E, Melani C, Pezzella F, Pierotti MA, Della Porta G . bcl-2 proto-oncogene expression in normal and neoplastic human myeloid cells Blood 1992 79: 1291–1298 CASPubMed Google Scholar
Sattler M, Salgia R . Activation of hematopoietic growth factor signal transduction pathways by the human oncogene BCR/ABL Cytokine Growth Factor Rev 1997 8: 63–79 CASPubMed Google Scholar
Cambier N, Chopra R, Strasser A, Metcalf D, Elefanty AG . BCR-ABL activates pathways mediating cytokine independence and protection against apoptosis in murine hematopoietic cells in a dose-dependent manner Oncogene 1998 16: 335–348 CASPubMed Google Scholar
Ahuja H, Bar-Eli M, Arlin Z, Advani S, Allen SL, Goldman J, Snyder D, Foti A, Cline M . The spectrum of molecular alterations in the evolution of chronic myelocytic leukemia J Clin Invest 1991 87: 2042–2047 CASPubMedPubMed Central Google Scholar
Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO, Wasik MA, Tsichlis PN, Calabretta B . Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway EMBO J 1997 16: 6151–6161 CASPubMedPubMed Central Google Scholar
Oliff A . Farnesyltransferase inhibitors: targeting the molecular basis of cancer Biochim Biophys Acta 1999 1423: C19–30 CASPubMed Google Scholar
Cox AD, Der CJ . Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? Biochim Biophys Acta 1997 1333: F51–71 CASPubMed Google Scholar
Beaupre DM, Kurzrock R . RAS inhibitors in hematologic cancers: biologic considerations and clinical applications Invest New Drugs 1999 17: 137–143 CASPubMed Google Scholar
Cochet O, Kenigsberg M, Delumeau I, Virone-Oddos A, Multon MC, Fridman WH, Schweighoffer F, Teillaud JL, Tocque B . Intracellular expression of an antibody fragment-neutralizing p21 ras promotes tumor regression Cancer Res 1998 58: 1170–1176 CASPubMed Google Scholar
Coffey MC, Strong JE, Forsyth PA, Lee PW . Reovirus therapy of tumors with activated Ras pathway Science 1998 282: 1332–1334 CASPubMed Google Scholar
Avruch J, Zhang XF, Kyriakis JM . Raf meets Ras: completing the framework of a signal transduction pathway Trends Biochem Sci 1994 19: 279–283 CASPubMed Google Scholar
Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME . Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis Science 1995 270: 1326–1331 CASPubMed Google Scholar
O'Gorman DM, McKenna SL, McGahon AJ, Knox KA, Cotter TG . Sensitisation of HL60 human leukaemic cells to cytotoxic drug-induced apoptosis by inhibition of PI3-kinase survival signals Leukemia 2000 14: 602–611 CASPubMed Google Scholar
Cleveland JL, Troppmair J, Packham G, Askew DS, Lloyd P, Gonzalez-Garcia M, Nunez G, Ihle JN, Rapp UR . v-raf suppresses apoptosis and promotes growth of interleukin-3- dependent myeloid cells Oncogene 1994 9: 2217–2226 CASPubMed Google Scholar
Wang HG, Rapp UR, Reed JC . Bcl-2 targets the protein kinase Raf-1 to mitochondria Cell 1996 87: 629–638 CASPubMed Google Scholar
Zimmermann S, Moelling K . Phosphorylation and regulation of Raf by Akt (protein kinase B) Science 1999 286: 1741–1744 CASPubMed Google Scholar
Majewski M, Nieborowska-Skorska M, Salomoni P, Slupianek A, Reiss K, Trotta R, Calabretta B, Skorski T . Activation of mitochondrial Raf-1 is involved in the antiapoptotic effects of Akt Cancer Res 1999 59: 2815–2819 CASPubMed Google Scholar
Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marme D, Rapp UR . Protein kinase C alpha activates RAF-1 by direct phosphorylation Nature 1993 364: 249–252 CASPubMed Google Scholar
Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN, Hay N . The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal Genes Dev 1997 11: 701–713 CASPubMed Google Scholar
Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J . Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway EMBO J 1997 16: 2783–2793 CASPubMedPubMed Central Google Scholar
Kodaki T, Woscholski R, Hallberg B, Rodriguez-Viciana P, Downward J, Parker PJ . The activation of phosphatidylinositol 3-kinase by Ras Curr Biol 1994 4: 798–806 CASPubMed Google Scholar
Hu P, Margolis B, Skolnik EY, Lammers R, Ullrich A, Schlessinger J . Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors Mol Cell Biol 1992 12: 981–990 CASPubMedPubMed Central Google Scholar
Carpenter CL, Cantley LC . Phosphoinositide 3-kinase and the regulation of cell growth Biochim Biophys Acta 1996 1288: M11–6 PubMed Google Scholar
Downward J . Mechanisms and consequences of activation of protein kinase B/Akt Curr Opin Cell Biol 1998 10: 262–267 CASPubMed Google Scholar
Walker KS, Deak M, Paterson A, Hudson K, Cohen P, Alessi DR . Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha Biochem J 1998 331: 299–308 CASPubMedPubMed Central Google Scholar
Franke TF, Cantley LC . Apoptosis. A Bad kinase makes good Nature 1997 390: 116–117 CASPubMed Google Scholar
Scheid MP, Duronio V . Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation Proc Natl Acad Sci USA 1998 95: 7439–7444 CASPubMedPubMed Central Google Scholar
Harada H, Becknell B, Wilm M, Mann M, Huang LJ, Taylor SS, Scott JD, Korsmeyer SJ . Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A Mol Cell 1999 3: 413–422 CASPubMed Google Scholar
Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC . Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD Science 1999 284: 339–343 CASPubMed Google Scholar
Plo I, Bettaieb A, Payrastre B, Mansat-De Mas V, Bordier C, Rousse A, Kowalski-Chauvel A, Laurent G, Lautier D . The phosphoinositide 3-kinase/Akt pathway is activated by daunorubicin in human acute myeloid leukemia cell lines FEBS Lett 1999 452: 150–154 CASPubMed Google Scholar
Maehama T, Dixon JE . PTEN: a tumour suppressor that functions as a phospholipid phosphatase Trends Cell Biol 1999 9: 125–128 CASPubMed Google Scholar
Kitada S, Krajewska M, Zhang X, Scudiero D, Zapata JM, Wang HG, Shabaik A, Tudor G, Krajewski S, Myers TG, Johnson GS, Sausville EA, Reed JC . Expression and location of pro-apoptotic Bcl-2 family protein BAD in normal human tissues and tumor cell lines Am J Pathol 1998 152: 51–61 CASPubMedPubMed Central Google Scholar
Hinton HJ, Welham MJ . Cytokine-induced protein kinase B activation and bad phosphorylation do not correlate with cell survival of hemopoietic cells J Immunol 1999 162: 7002–7009 CASPubMed Google Scholar
Mercurio F, Manning AM . Multiple signals converging on NF-kappaB Curr Opin Cell Biol 1999 11: 226–232 CASPubMed Google Scholar
Foo SY, Nolan GP . NF-kappaB to the rescue: RELs, apoptosis and cellular transformation Trends Genet 1999 15: 229–235 CASPubMed Google Scholar
Ghosh S, May MJ, Kopp EB . NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses Annu Rev Immunol 1998 16: 225–260 CASPubMed Google Scholar
Romashkova JA, Makarov SS . NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling Nature 1999 401: 86–90 CASPubMed Google Scholar
Wang CY, Guttridge DC, Mayo MW, Baldwin AS Jr . NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis Mol Cell Biol 1999 19: 5923–5929 CASPubMedPubMed Central Google Scholar
Lee HH, Dadgostar H, Cheng Q, Shu J, Cheng G . NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes Proc Natl Acad Sci USA 1999 96: 9136–9141 CASPubMedPubMed Central Google Scholar
Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW . Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control Proc Natl Acad Sci USA 1997 94: 10057–10062 CASPubMedPubMed Central Google Scholar
Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM . Suppression of TNF-alpha-induced apoptosis by NF-kappaB Science 1996 274: 787–789 CASPubMed Google Scholar
Wang CY, Mayo MW, Baldwin AS Jr . TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB Science 1996 274: 784–787 ArticleCASPubMed Google Scholar
Grimm S, Bauer MK, Baeuerle PA, Schulze-Osthoff K . Bcl-2 down-regulates the activity of transcription factor NF-kappaB induced upon apoptosis J Cell Biol 1996 134: 13–23 CASPubMed Google Scholar
Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR . DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1 Mol Cell 1998 1: 543–551 CASPubMed Google Scholar
Hellin AC, Calmant P, Gielen J, Bours V, Merville MP . Nuclear factor–kappaB-dependent regulation of p53 gene expression induced by daunomycin genotoxic drug Oncogene 1998 16: 1187–1195 CASPubMed Google Scholar
Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB . NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase Nature 1999 401: 82–85 CASPubMed Google Scholar
Meinhardt G, Roth J, Totok G, Auner H, Emmerich B, Hass R . Signaling defect in the activation of caspase-3 and PKCdelta in human TUR leukemia cells is associated with resistance to apoptosis Exp Cell Res 1999 247: 534–542 CASPubMed Google Scholar
Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC . The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases EMBO J 1997 16: 6914–6925 CASPubMedPubMed Central Google Scholar
Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, Sonenshein GE . Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer J Clin Invest 1997 100: 2952–2960 CASPubMedPubMed Central Google Scholar
Daniel PB, Walker WH, Habener JF . Cyclic AMP signaling and gene regulation Annu Rev Nutr 1998 18: 353–383 CASPubMed Google Scholar
Montminy M . Transcriptional regulation by cyclic AMP Annu Rev Biochem 1997 66: 807–822 CASPubMed Google Scholar
Goldman PS, Tran VK, Goodman RH . The multifunctional role of the co-activator CBP in transcriptional regulation Recent Prog Horm Res 1997 52: 103–119 CASPubMed Google Scholar
Du K, Montminy M . CREB is a regulatory target for the protein kinase Akt/PKB J Biol Chem 1998 273: 32377–32379 CASPubMed Google Scholar
Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF . The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB Mol Cell Biol 1999 19: 6195–6206 CASPubMedPubMed Central Google Scholar
Zhou P, Qian L, Kozopas KM, Craig RW . Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions Blood 1997 89: 630–643 CASPubMed Google Scholar
Chao JR, Wang JM, Lee SF, Peng HW, Lin YH, Chou CH, Li JC, Huang HM, Chou CK, Kuo ML, Yen JJ, Yang-Yen HF . mcl-1 is an immediate–early gene activated by the granulocyte–macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response Mol Cell Biol 1998 18: 4883–4898 CASPubMedPubMed Central Google Scholar
Paradis S, Ruvkun G . Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor Genes Dev 1998 12: 2488–2498 CASPubMedPubMed Central Google Scholar
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME . Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor Cell 1999 96: 857–868 CASPubMed Google Scholar
Tang ED, Nunez G, Barr FG, Guan KL . Negative regulation of the forkhead transcription factor FKHR by Akt J Biol Chem 1999 274: 16741–16746 CASPubMed Google Scholar
Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM . Direct control of the Forkhead transcription factor AFX by protein kinase B Nature 1999 398: 630–634 CASPubMed Google Scholar
Widmann C, Gibson S, Johnson GL . Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals J Biol Chem 1998 273: 7141–7147 CASPubMed Google Scholar
Carmody RJ, Cotter TG . Molecular events and mechanisms of apoptosis Sepsis 1998 2: 9–19 Google Scholar
Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM . Conversion of Bcl-2 to a Bax-like death effector by caspases Science 1997 278: 1966–1968 CASPubMed Google Scholar
Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC . Regulation of cell death protease caspase-9 by phosphorylation Science 1998 282: 1318–1321 CASPubMed Google Scholar
Fujita E, Kouroku Y, Miho Y, Tsukahara T, Ishiura S, Momoi T . Wortmannin enhances activation of CPP32 (Caspase-3) induced by TNF or anti-Fas Cell Death Differ 1998 5: 289–297 CASPubMed Google Scholar
Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR . Glycogen synthase kinase-3: functions in oncogenesis and development Biochim Biophys Acta 1992 1114: 147–162 CASPubMed Google Scholar
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B Nature 1995 378: 785–789 CASPubMed Google Scholar
Fiol CJ, Williams JS, Chou CH, Wang QM, Roach PJ, Andrisani OM . A secondary phosphorylation of CREB341 at Ser129 is required for the cAMP-mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression J Biol Chem 1994 269: 32187–32193 CASPubMed Google Scholar
Welsh GI, Proud CG . Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B Biochem J 1993 294: 625–629 CASPubMedPubMed Central Google Scholar
Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC . Regulation of endothelium-derived nitric oxide production by the protein kinase Akt Nature 1999 399: 597–601 CASPubMedPubMed Central Google Scholar
Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM . Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation Nature 1999 399: 601–605 CASPubMed Google Scholar
Kanashiro CA, Khalil RA . Signal transduction by protein kinase C in mammalian cells Clin Exp Pharmacol Physiol 1998 25: 974–985 CASPubMed Google Scholar
Toker A . Signaling through protein kinase C Front Biosci 1998 3: D1134–1147 CASPubMed Google Scholar
Blobe GC, Obeid LM, Hannun YA . Regulation of protein kinase C and role in cancer biology Cancer Metastasis Rev 1994 13: 411–431 CASPubMed Google Scholar
Blobe GC, Stribling S, Obeid LM, Hannun YA . Protein kinase C isoenzymes: regulation and function Cancer Surv 1996 27: 213–248 CASPubMed Google Scholar
Cornford P, Evans J, Dodson A, Parsons K, Woolfenden A, Neoptolemos J, Foster CS . Protein kinase C isoenzyme patterns characteristically modulated in early prostate cancer Am J Pathol 1999 154: 137–144 CASPubMedPubMed Central Google Scholar
Manni A, Buckwalter E, Etindi R, Kunselman S, Rossini A, Mauger D, Dabbs D, Demers L . Induction of a less aggressive breast cancer phenotype by protein kinase C-alpha and -beta overexpression Cell Growth Differ 1996 7: 1187–1198 CASPubMed Google Scholar
Choi PM, Tchou-Wong KM, Weinstein IB . Overexpression of protein kinase C in HT29 colon cancer cells causes growth inhibition and tumor suppression Mol Cell Biol 1990 10: 4650–4657 CASPubMedPubMed Central Google Scholar
Cacace AM, Guadagno SN, Krauss RS, Fabbro D, Weinstein IB . The epsilon isoform of protein kinase C is an oncogene when overexpressed in rat fibroblasts Oncogene 1993 8: 2095–2104 CASPubMed Google Scholar
Housey GM, Johnson MD, Hsiao WL, O'Brian CA, Murphy JP, Kirschmeier P, Weinstein IB . Overproduction of protein kinase C causes disordered growth control in rat fibroblasts Cell 1988 52: 343–354 CASPubMed Google Scholar
Megidish T, Mazurek N . A mutant protein kinase C that can transform fibroblasts Nature 1989 342: 807–811 CASPubMed Google Scholar
Borner C, Filipuzzi I, Weinstein IB, Imber R . Failure of wild-type or a mutant form of protein kinase C-alpha to transform fibroblasts Nature 1991 353: 78–80 CASPubMed Google Scholar
Perletti GP, Folini M, Lin HC, Mischak H, Piccinini F, Tashjian A . Overexpression of protein kinase C epsilon is oncogenic in rat colonic epithelial cells Oncogene 1996 12: 847–854 CASPubMed Google Scholar
Perletti G, Tessitore L, Sesca E, Pani P, Dianzani MU, Piccinini F . Epsilon PKC acts like a marker of progressive malignancy in rat liver, but fails to enhance tumorigenesis in rat hepatoma cells in culture Biochem Biophys Res Commun 1996 221: 688–691 CASPubMed Google Scholar
Wang XY, Repasky E, Liu HT . Antisense inhibition of protein kinase C alpha reverses the transformed phenotype in human lung carcinoma cells Exp Cell Res 1999 250: 253–263 CASPubMed Google Scholar
Fine RL, Chambers TC, Sachs CW . P-glycoprotein, multidrug resistance and protein kinase C Stem Cells 1996 14: 47–55 CASPubMed Google Scholar
Blobe GC, Sachs CW, Khan WA, Fabbro D, Stabel S, Wetsel WC, Obeid LM, Fine RL, Hannun YA . Selective regulation of expression of protein kinase C (PKC) isoenzymes in multidrug-resistant MCF-7 cells. Functional significance of enhanced expression of PKC alpha J Biol Chem 1993 268: 658–664 CASPubMed Google Scholar
Beck J, Handgretinger R, Klingebiel T, Dopfer R, Schaich M, Ehninger G, Niethammer D, Gekeler V . Expression of PKC isozyme and MDR-associated genes in primary and relapsed state AML Leukemia 1996 10: 426–433 CASPubMed Google Scholar
Wang S, Vrana JA, Bartimole TM, Freemerman AJ, Jarvis WD, Kramer LB, Krystal G, Dent P, Grant S . Agents that down-regulate or inhibit protein kinase C circumvent resistance to 1-beta-D-arabinofuranosylcytosine-induced apoptosis in human leukemia cells that overexpress Bcl-2 Mol Pharmacol 1997 52: 1000–1009 CASPubMed Google Scholar
Murata M, Nagai M, Fujita M, Ohmori M, Takahara J . Calphostin C synergistically induces apoptosis with VP-16 in lymphoma cells which express abundant phosphorylated Bcl-2 protein Cell Mol Life Sci 1997 53: 737–743 CASPubMed Google Scholar
Ruvolo PP, Deng X, Carr BK, May WS . A functional role for mitochondrial protein kinase Calpha in Bcl2 phosphorylation and suppression of apoptosis J Biol Chem 1998 273: 25436–25442 CASPubMed Google Scholar
Ito T, Deng X, Carr B, May WS . Bcl-2 phosphorylation required for anti-apoptosis function J Biol Chem 1997 272: 11671–11673 CASPubMed Google Scholar
Gubina E, Rinaudo MS, Szallasi Z, Blumberg PM, Mufson RA . Overexpression of protein kinase C isoform epsilon but not delta in human interleukin-3-dependent cells suppresses apoptosis and induces bcl-2 expression Blood 1998 91: 823–829 CASPubMed Google Scholar
Perletti GP, Concari P, Brusaferri S, Marras E, Piccinini F, Tashjian AH Jr . Protein kinase Cepsilon is oncogenic in colon epithelial cells by interaction with the ras signal transduction pathway Oncogene 1998 16: 3345–3348 CASPubMed Google Scholar
Chen CY, Faller DV . Direction of p21ras-generated signals towards cell growth or apoptosis is determined by protein kinase C and Bcl-2 Oncogene 1995 11: 1487–1498 CASPubMed Google Scholar
Tan Y, Ruan H, Demeter MR, Comb MJ . p90(RSK) blocks bad-mediated cell death via a protein kinase C-dependent pathway J Biol Chem 1999 274: 34859–34867 CASPubMed Google Scholar
Jamieson L, Carpenter L, Biden TJ, Fields AP . Protein kinase Ciota activity is necessary for Bcr-Abl-mediated resistance to drug-induced apoptosis J Biol Chem 1999 274: 3927–3930 CASPubMed Google Scholar
Copeland KF, Haaksma AG, Goudsmit J, Krammer PH, Heeney JL . Inhibition of apoptosis in T cells expressing human T cell leukemia virus type I Tax AIDS Res Hum Retroviruses 1994 10: 1259–1268 CASPubMed Google Scholar
Lozano J, Berra E, Municio MM, Diaz-Meco MT, Dominguez I, Sanz L, Moscat J . Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase J Biol Chem 1994 269: 19200–19202 CASPubMed Google Scholar
Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ . Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1 Science 1998 281: 2042–2045 CASPubMed Google Scholar
Tibbles LA, Woodgett JR . The stress-activated protein kinase pathways Cell Mol Life Sci 1999 55: 1230–1254 CASPubMed Google Scholar
Karin M, Liu Z, Zandi E . AP-1 function and regulation Curr Opin Cell Biol 1997 9: 240–246 CASPubMed Google Scholar
Gille H, Strahl T, Shaw PE . Activation of ternary complex factor Elk-1 by stress-activated protein kinases Curr Biol 1995 5: 1191–1200 CASPubMed Google Scholar
Gille H, Kortenjann M, Thomae O, Moomaw C, Slaughter C, Cobb MH, Shaw PE . ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation EMBO J 1995 14: 951–962 CASPubMedPubMed Central Google Scholar
Ham J, Babij C, Whitfield J, Pfarr CM, Lallemand D, Yaniv M, Rubin LL . A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death Neuron 1995 14: 927–939 CASPubMed Google Scholar
Colotta F, Polentarutti N, Sironi M, Mantovani A . Expression and involvement of c-fos and c-jun protooncogenes in programmed cell death induced by growth factor deprivation in lymphoid cell lines J Biol Chem 1992 267: 18278–18283 CASPubMed Google Scholar
Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ . Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway Science 2000 288: 870–874 CASPubMed Google Scholar
Roffler-Tarlov S, Brown JJ, Tarlov E, Stolarov J, Chapman DL, Alexiou M, Papaioannou VE . Programmed cell death in the absence of c-Fos and c-Jun Development 1996 122: 1–9 CASPubMed Google Scholar
Nishina H, Fischer KD, Radvanyi L, Shahinian A, Hakem R, Rubie EA, Bernstein A, Mak TW, Woodgett JR, Penninger JM . Stress-signalling kinase Sek1 protects thymocytes from apoptosis mediated by CD95 and CD3 Nature 1997 385: 350–353 CASPubMed Google Scholar
Faris M, Kokot N, Latinis K, Kasibhatla S, Green DR, Koretzky GA, Nel A . The c-Jun N-terminal kinase cascade plays a role in stress-induced apoptosis in Jurkat cells by up-regulating Fas ligand expression J Immunol 1998 160: 134–144 CASPubMed Google Scholar
Le-Niculescu H, Bonfoco E, Kasuya Y, Claret FX, Green DR, Karin M . Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death Mol Cell Biol 1999 19: 751–763 CASPubMedPubMed Central Google Scholar
Abreu-Martin MT, Palladino AA, Faris M, Carramanzana NM, Nel AE, Targan SR . Fas activates the JNK pathway in human colonic epithelial cells: lack of a direct role in apoptosis Am J Physiol 1999 276: G599–G605 CASPubMed Google Scholar
Low W, Smith A, Ashworth A, Collins M . JNK activation is not required for Fas-mediated apoptosis Oncogene 1999 18: 3737–3741 CASPubMed Google Scholar
Lenczowski JM, Dominguez L, Eder AM, King LB, Zacharchuk CM, Ashwell JD . Lack of a role for Jun kinase and AP-1 in Fas-induced apoptosis Mol Cell Biol 1997 17: 170–181 CASPubMedPubMed Central Google Scholar
Iordanov MS, Magun BE . Different mechanisms of c-Jun NH(2)-terminal kinase-1 (JNK1) activation by ultraviolet-B radiation and by oxidative stressors J Biol Chem 1999 274: 25801–25806 CASPubMed Google Scholar
Terada K, Kaziro Y, Satoh T . Ras-dependent activation of c-jun N-terminal kinase/stress activated protein kinase in response to interleukin-3 stimulation in hematopoietic BaF3 cells J Biol Chem 1997 272: 4544–4548 CASPubMed Google Scholar
Johnson R, Spiegelman B, Hanahan D, Wisdom R . Cellular transformation and malignancy induced by ras require c-jun Mol Cell Biol 1996 16: 4504–4511 CASPubMedPubMed Central Google Scholar
Raitano AB, Halpern JR, Hambuch TM, Sawyers CL . The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation Proc Natl Acad Sci USA 1995 92: 11746–11750 CASPubMedPubMed Central Google Scholar
Zanke BW, Boudreau K, Rubie E, Winnett E, Tibbles LA, Zon L, Kyriakis J, Liu FF, Woodgett JR . The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat Curr Biol 1996 6: 606–613 CASPubMed Google Scholar
Seimiya H, Mashima T, Toho M, Tsuruo T . c-Jun NH2-terminal kinase-mediated activation of interleukin-1beta converting enzyme/CED-3-like protease during anticancer drug-induced apoptosis J Biol Chem 1997 272: 4631–4636 CASPubMed Google Scholar
Birkenkamp KU, Dokter WH, Esselink MT, Jonk LJ, Kruijer W, Vellenga E . A dual function for p38 MAP kinase in hematopoietic cells: involvement in apoptosis and cell activation Leukemia 1999 13: 1037–1045 CASPubMed Google Scholar
Okumura K, Shirasawa S, Nishioka M, Sasazuki T . Activated Ki-Ras suppresses 12-O-tetradecanoylphorbol-13-acetate-induced activation of the c-Jun NH2-terminal kinase pathway in human colon cancer cells Cancer Res 1999 59: 2445–2450 CASPubMed Google Scholar
Tsujimoto Y, Cossman J, Jaffe E, Croce CM . Involvement of the bcl-2 gene in human follicular lymphoma Science 1985 228: 1440–1443 CASPubMed Google Scholar
Miyashita T, Reed JC . bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs Cancer Res 1992 52: 5407–5411 CASPubMed Google Scholar
Miyashita T, Reed JC . Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line Blood 1993 81: 151–157 CASPubMed Google Scholar
Bissonnette RP, Echeverri F, Mahboubi A, Green DR . Apoptotic cell death induced by c-myc is inhibited by bcl-2 Nature 1992 359: 552–554 CASPubMed Google Scholar
Jaattela M, Benedict M, Tewari M, Shayman JA, Dixit VM . Bcl-x and Bcl-2 inhibit TNF and Fas-induced apoptosis and activation of phospholipase A2 in breast carcinoma cells Oncogene 1995 10: 2297–2305 CASPubMed Google Scholar
Robertson JD, Datta K, Kehrer JP . Bcl-xL overexpression restricts heat-induced apoptosis and influences hsp70, bcl-2, and Bax protein levels in FL5.12 cells Biochem Biophys Res Commun 1997 241: 164–168 CASPubMed Google Scholar
Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME . Two CD95 (APO-1/Fas) signaling pathways EMBO J 1998 17: 1675–1687 CASPubMedPubMed Central Google Scholar
Minn AJ, Rudin CM, Boise LH, Thompson CB . Expression of bcl-xL can confer a multidrug resistance phenotype Blood 1995 86: 1903–1910 CASPubMed Google Scholar
Chao DT, Korsmeyer SJ . BCL-2 family: regulators of cell death Annu Rev Immunol 1998 16: 395–419 CASPubMed Google Scholar
Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB . bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death Cell 1993 74: 597–608 CASPubMed Google Scholar
Reed JC . Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance Curr Opin Oncol 1995 7: 541–546 CASPubMed Google Scholar
Hermine O, Haioun C, Lepage E, d'Agay MF, Briere J, Lavignac C, Fillet G, Salles G, Marolleau JP, Diebold J, Reyas F, Gaulard P . Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin's lymphoma. Groupe d'Etude des Lymphomes de l'Adulte (GELA) Blood 1996 87: 265–272 CASPubMed Google Scholar
Maung ZT, MacLean FR, Reid MM, Pearson AD, Proctor SJ, Hamilton PJ, Hall AG . The relationship between bcl-2 expression and response to chemotherapy in acute leukaemia Br J Haematol 1994 88: 105–109 CASPubMed Google Scholar
Gasparini G, Barbareschi M, Doglioni C, Palma PD, Mauri FA, Boracchi P, Bevilacqua P, Caffo O, Morelli L, Verderio P, Pezzella F, Harris AL . Expression of bcl-2 protein predicts efficacy of adjuvant treatments in operable node-positive breast cancer Clin Cancer Res 1995 1: 189–198 CASPubMed Google Scholar
Bensi L, Longo R, Vecchi A, Messora C, Garagnani L, Bernardi S, Tamassia MG, Sacchi S . Bcl-2 oncoprotein expression in acute myeloid leukemia Haematologica 1995 80: 98–102 CASPubMed Google Scholar
Russell NH, Hunter AE, Bradbury D, Zhu YM, Keith F . Biological features of leukaemic cells associated with autonomous growth and reduced survival in acute myeloblastic leukaemia Leuk Lymphoma 1995 16: 223–229 CASPubMed Google Scholar
Karakas T, Maurer U, Weidmann E, Miething CC, Hoelzer D, Bergmann L . High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia Ann Oncol 1998 9: 159–165 CASPubMed Google Scholar
Hellemans P, van Dam PA, Weyler J, van Oosterom AT, Buytaert P, Van Marck E . Prognostic value of bcl-2 expression in invasive breast cancer Br J Cancer 1995 72: 354–360 CASPubMedPubMed Central Google Scholar
Joensuu H, Pylkkanen L, Toikkanen S . Bcl-2 protein expression and long-term survival in breast cancer Am J Pathol 1994 145: 1191–1198 CASPubMedPubMed Central Google Scholar
Furuya Y, Krajewski S, Epstein JI, Reed JC, Isaacs JT . Expression of bcl-2 and the progression of human and rodent prostatic cancers Clin Cancer Res 1996 2: 389–398 CASPubMed Google Scholar
Campos L, Sabido O, Rouault JP, Guyotat D . Effects of BCL-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells Blood 1994 84: 595–600 CASPubMed Google Scholar
Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC . Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bcl-2 gene expression Antisense Res Dev 1994 4: 71–79 CASPubMed Google Scholar
Bargou RC, Wagener C, Bommert K, Mapara MY, Daniel PT, Arnold W, Dietel M, Guski H, Feller A, Royer HD, Dorken B . Overexpression of the death-promoting gene bax-alpha which is downregulated in breast cancer restores sensitivity to different apoptotic stimuli and reduces tumor growth in SCID mice J Clin Invest 1996 97: 2651–2659 CASPubMedPubMed Central Google Scholar
Sumantran VN, Ealovega MW, Nunez G, Clarke MF, Wicha MS . Overexpression of Bcl-XS sensitizes MCF-7 cells to chemotherapy-induced apoptosis Cancer Res 1995 55: 2507–2510 CASPubMed Google Scholar
Krajewski S, Blomqvist C, Franssila K, Krajewska M, Wasenius VM, Niskanen E, Nordling S, Reed JC . Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma Cancer Res 1995 55: 4471–4478 CASPubMed Google Scholar
Deng G, Lane C, Kornblau S, Goodacre A, Snell V, Andreeff M, Deisseroth AB . Ratio of bcl-xshort to bcl-xlong is different in good- and poor-prognosis subsets of acute myeloid leukemia Mol Med 1998 4: 158–164 CASPubMedPubMed Central Google Scholar
Oltvai ZN, Milliman CL, Korsmeyer SJ . Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death Cell 1993 74: 609–619 CASPubMed Google Scholar
Hsu YT, Youle RJ . Nonionic detergents induce dimerization among members of the Bcl-2 family J Biol Chem 1997 272: 13829–13834 CASPubMed Google Scholar
Otter I, Conus S, Ravn U, Rager M, Olivier R, Monney L, Fabbro D, Borner C . The binding properties and biological activities of Bcl-2 and Bax in cells exposed to apoptotic stimuli J Biol Chem 1998 273: 6110–6120 CASPubMed Google Scholar
Holmgreen SP, Huang DC, Adams JM, Cory S . Survival activity of Bcl-2 homologs Bcl-w and A1 only partially correlates with their ability to bind pro-apoptotic family members Cell Death Differ 1999 6: 525–532 CASPubMed Google Scholar
Minn AJ, Kettlun CS, Liang H, Kelekar A, Vander Heiden MG, Chang BS, Fesik SW, Fill M, Thompson CB . Bcl-xL regulates apoptosis by heterodimerization-dependent and -independent mechanisms EMBO J 1999 18: 632–643 CASPubMedPubMed Central Google Scholar
Minshall C, Arkins S, Straza J, Conners J, Dantzer R, Freund GG, Kelley KW . IL-4 and insulin-like growth factor-I inhibit the decline in Bcl-2 and promote the survival of IL-3-deprived myeloid progenitors J Immunol 1997 159: 1225–1232 CASPubMed Google Scholar
Hu Y, Benedict MA, Wu D, Inohara N, Nunez G . Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation Proc Natl Acad Sci USA 1998 95: 4386–4391 CASPubMedPubMed Central Google Scholar
Moriishi K, Huang DC, Cory S, Adams JM . Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1 Proc Natl Acad Sci USA 1999 96: 9683–9688 CASPubMedPubMed Central Google Scholar
Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroemer G . Mitochondrial control of nuclear apoptosis J Exp Med 1996 183: 1533–1544 CASPubMed Google Scholar
Kroemer G, Zamzami N, Susin SA . Mitochondrial control of apoptosis Immunol Today 1997 18: 44–51 CASPubMed Google Scholar
Keith FJ, Russell NH . The role of p53 in malignancy Cancer Treat Res 1996 84: 113–137 CASPubMed Google Scholar
Kastan MB, Canman CE, Leonard CJ . P53, cell cycle control and apoptosis: implications for cancer Cancer Metastasis Rev 1995 14: 3–15 CASPubMed Google Scholar
Soddu S, Sacchi A . P53 role in DNA repair and tumorigenesis J Exp Clin Cancer Res 1997 16: 237–242 CASPubMed Google Scholar
Canman CE, Gilmer TM, Coutts SB, Kastan MB . Growth factor modulation of p53-mediated growth arrest versus apoptosis Genes Dev 1995 9: 600–611 CASPubMed Google Scholar
Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC . Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivoOncogene 1994 9: 1799–1805 CASPubMed Google Scholar
Krammer PH . CD95(APO-1/Fas)-mediated apoptosis: live and let die Adv Immunol 1999 71: 163–210 CASPubMed Google Scholar
Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME . Differential modulation of apoptosis sensitivity in CD95 type I and type II cells J Biol Chem 1999 274: 22532–22538 CASPubMed Google Scholar
Friesen C, Herr I, Krammer PH, Debatin KM . Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells Nature Med 1996 2: 574–577 CASPubMed Google Scholar
Muller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ, Stremmel W, Krammer PH, Galle PR . Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO- 1/Fas) receptor/ligand system and involves activation of wild-type p53 J Clin Invest 1997 99: 403–413 CASPubMedPubMed Central Google Scholar
Fulda S, Sieverts H, Friesen C, Herr I, Debatin KM . The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells Cancer Res 1997 57: 3823–3829 CASPubMed Google Scholar
Micheau O, Solary E, Hammann A, Martin F, Dimanche-Boitrel MT . Sensitization of cancer cells treated with cytotoxic drugs to fas-mediated cytotoxicity J Natl Cancer Inst 1997 89: 783–789 CASPubMed Google Scholar
Posovszky C, Friesen C, Herr I, Debatin KM . Chemotherapeutic drugs sensitize pre-B ALL cells for CD95- and cytotoxic T-lymphocyte-mediated apoptosis Leukemia 1999 13: 400–409 CASPubMed Google Scholar
Costa-Pereira AP, McKenna SL, Cotter TG . Activation of SAPK/JNK by camptothecin sensitises androgen-independent prostate cancer cells to Fas-induced apoptosis Br J Cancer 2000 82: 1827–1834 CASPubMedPubMed Central Google Scholar
Villunger A, Egle A, Marschitz I, Kos M, Bock G, Ludwig H, Geley S, Kofler R, Greil R . Constitutive expression of Fas (Apo-1/CD95) ligand on multiple myeloma cells: a potential mechanism of tumor-induced suppression of immune surveillance Blood 1997 90: 12–20 CASPubMed Google Scholar
Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D, Mariani SM, Stremmel W, Krammer PH, Galle PR . Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells – a mechanism of immune evasion? Nature Med 1996 2: 1361–1366 CASPubMed Google Scholar
McGahon AJ, Costa Pereira AP, Daly L, Cotter TG . Chemotherapeutic drug-induced apoptosis in human leukaemic cells is independent of the Fas (APO-1/CD95) receptor/ligand system Br J Haematol 1998 101: 539–547 CASPubMed Google Scholar
Eischen CM, Kottke TJ, Martins LM, Basi GS, Tung JS, Earnshaw WC, Leibson PJ, Kaufmann SH . Comparison of apoptosis in wild-type and Fas-resistant cells: chemotherapy-induced apoptosis is not dependent on Fas/Fas ligand interactions Blood 1997 90: 935–943 CASPubMed Google Scholar
Villunger A, Egle A, Kos M, Hartmann BL, Geley S, Kofler R, Greil R . Drug-induced apoptosis is associated with enhanced Fas (Apo-1/CD95) ligand expression but occurs independently of Fas (Apo-1/CD95) signaling in human T-acute lymphatic leukemia cells Cancer Res 1997 57: 3331–3334 CASPubMed Google Scholar
Munker R, Lubbert M, Yonehara S, Tuchnitz A, Mertelsmann R, Wilmanns W . Expression of the Fas antigen on primary human leukemia cells Ann Hematol 1995 70: 15–17 CASPubMed Google Scholar
Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT . Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs J Biol Chem 1999 274: 7987–7992 CASPubMed Google Scholar
Hata H, Matsuzaki H, Takeya M, Yoshida M, Sonoki T, Nagasaki A, Kuribayashi N, Kawano F, Takatsuki K . Expression of Fas/Apo-1 (CD95) and apoptosis in tumor cells from patients with plasma cell disorders Blood 1995 86: 1939–1945 CASPubMed Google Scholar
Roth W, Fontana A, Trepel M, Reed JC, Dichgans J, Weller M . Immunochemotherapy of malignant glioma: synergistic activity of CD95 ligand and chemotherapeutics Cancer Immunol Immunother 1997 44: 55–63 CASPubMed Google Scholar
Nakamura S, Takeshima M, Nakamura Y, Ohtake S, Matsuda T . Induction of apoptosis in HL60 leukemic cells by anticancer drugs in combination with anti-Fas monoclonal antibody Anticancer Res 1997 17: 173–179 CASPubMed Google Scholar
Mizutani Y, Okada Y, Yoshida O, Fukumoto M, Bonavida B . Doxorubicin sensitizes human bladder carcinoma cells to Fas-mediated cytotoxicity Cancer 1997 79: 1180–1189 CASPubMed Google Scholar
Peli J, Schroter M, Rudaz C, Hahne M, Meyer C, Reichmann E, Tschopp J . Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas EMBO J 1999 18: 1824–1831 CASPubMedPubMed Central Google Scholar
Fenton RG, Hixon JA, Wright PW, Brooks AD, Sayers TJ . Inhibition of Fas (CD95) expression and Fas-mediated apoptosis by oncogenic Ras Cancer Res 1998 58: 3391–3400 CASPubMed Google Scholar
Hausler P, Papoff G, Eramo A, Reif K, Cantrell DA, Ruberti G . Protection of CD95-mediated apoptosis by activation of phosphatidylinositide 3-kinase and protein kinase B Eur J Immunol 1998 28: 57–69 CASPubMed Google Scholar
Wick W, Furnari FB, Naumann U, Cavenee WK, Weller M . PTEN gene transfer in human malignant glioma: sensitization to irradiation and CD95L-induced apoptosis Oncogene 1999 18: 3936–3943 CASPubMed Google Scholar
Drew L, Kumar R, Bandyopadhyay D, Gupta S . Inhibition of the protein kinase C pathway promotes anti-CD95-induced apoptosis in Jurkat T cells Int Immunol 1998 10: 877–889 CASPubMed Google Scholar
Lotem J, Sachs L . Hematopoietic cytokines inhibit apoptosis induced by transforming growth factor beta 1 and cancer chemotherapy compounds in myeloid leukemic cells Blood 1992 80: 1750–1757 CASPubMed Google Scholar
Kasimir-Bauer S, Ottinger H, Meusers P, Beelen DW, Brittinger G, Seeber S, Scheulen ME . In acute myeloid leukemia, coexpression of at least two proteins, including P-glycoprotein, the multidrug resistance-related protein, bcl-2, mutant p53, and heat-shock protein 27, is predictive of the response to induction chemotherapy Exp Hematol 1998 26: 1111–1117 CASPubMed Google Scholar
Izquierdo MA, Shoemaker RH, Flens MJ, Scheffer GL, Wu L, Prather TR, Scheper RJ . Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines Int J Cancer 1996 65: 230–237 CASPubMed Google Scholar
Fanidi A, Harrington EA, Evan GI . Cooperative interaction between c-myc and bcl-2 proto-oncogenes Nature 1992 359: 554–556 CASPubMed Google Scholar
Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB, Gilliland DG, Druker BJ . CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins Blood 1997 90: 4947–4952 CASPubMed Google Scholar
le Coutre P, Mologni L, Cleris L, Marchesi E, Buchdunger E, Giardini R, Formelli F, Gambacorti-Passerini C . In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor J Natl Cancer Inst 1999 91: 163–168 CASPubMed Google Scholar
Sausville EA, Lush RD, Headlee D, Smith AC, Figg WD, Arbuck SG, Senderowicz AM, Fuse E, Tanii H, Kuwabara T, Kobayashi S . Clinical pharmacology of UCN-01: initial observations and comparison to preclinical models Cancer Chemother Pharmacol 1998 42: S54–59 CASPubMed Google Scholar
Fabbro D, Ruetz S, Bodis S, Pruschy M, Csermak K, Man A, Campochiaro P, Wood J, O'Reilly T, Meyer T . PKC412 – a protein kinase inhibitor with a broad therapeutic potential Anticancer Drug Des 2000 15: 17–28 CASPubMed Google Scholar
Teicher BA, Alvarez E, Mendelsohn LG, Ara G, Menon K, Ways DK . Enzymatic rationale and preclinical support for a potent protein kinase C beta inhibitor in cancer therapy Adv Enzyme Regul 1999 39: 313–327 CASPubMed Google Scholar
Reed JC . Promise and problems of Bcl-2 antisense therapy J Natl Cancer Inst 1997 89: 988–990 CASPubMed Google Scholar
Bataille R, Barlogie B, Lu ZY, Rossi JF, Lavabre-Bertrand T, Beck T, Wijdenes J, Brochier J, Klein B . Biologic effects of anti-interleukin-6 murine monoclonal antibody in advanced multiple myeloma Blood 1995 86: 685–691 CASPubMed Google Scholar