Dissociable Effects of Selective 5-HT2A and 5-HT2C Receptor Antagonists on Serial Spatial Reversal Learning in Rats (original) (raw)
Abramowski D, Rigo M, Duc D, Hoyer D, Staufenbiel M (1995). Localization of the 5-hydroxytryptamine2C receptor protein in human and rat brain using specific antisera. Neuropharmacology34: 1635–1645. ArticleCASPubMed Google Scholar
Barker EL, Westphal RS, Schmidt D, Sanders-Bush E (1994). Constitutively active 5-hydroxytryptamine2C receptors reveal novel inverse agonist activity of receptor ligands. J Biol Chem269: 833–835. Google Scholar
Barnes JM, Costall B, Coughlan J, Domeney AM, Gerrard PA, Kelly ME et al (1990). The effects of ondansetron, a 5-HT3 receptor antagonist, on cognition in rodents and primates. Pharmacol Biochem Behav35: 955–962. ArticleCASPubMed Google Scholar
Barnes NM, Sharp T (1999). A review of central 5-HT receptors and their function. Neuropharmacology38: 1083–1152. ArticleCASPubMed Google Scholar
Baumgarten HG, Grozdanovic Z (1998). Role of serotonin in obsessive-compulsive disorder. Br J Psychiatry35 (Suppl): 13–20. Article Google Scholar
Bensadoun JC, Brooks SP, Dunnett SB (2004). Free operant and discrete trial performance of mice in the nine-hole box apparatus: validation using amphetamine and scopolamine. Psychopharmacology174: 396–405. ArticleCASPubMed Google Scholar
Berg KA, Clarke WP, Sailstad C, Saltzman A, Maayani S (1994). Signal transduction differences between 5-hydroxytryptamine type 2A and type 2C receptor systems. Mol Pharmacol46: 477–484. CASPubMed Google Scholar
Berg KA, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke WP (1998). Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol54: 94–104. ArticleCASPubMed Google Scholar
Bonaccorso S, Meltzer HY, Li Z, Dai J, Alboszta AR, Ichikawa J (2002). SR46349-B, a 5-HT(2A/2C) receptor antagonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Neuropsychopharmacology27: 430–441. ArticleCASPubMed Google Scholar
Boulougouris V, Dalley JW, Robbins TW (2007). Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res179: 219–228. ArticlePubMed Google Scholar
Bussey TJ, Muir JL, Everitt BJ, Robbins TW (1997). Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behav Neurosci111: 920–936. ArticleCASPubMed Google Scholar
Butter CM (1969). Impairments in selective attention to visual stimuli in monkeys with inferotemporal and lateral striate lesions. Brain Res12: 374–383. ArticleCASPubMed Google Scholar
Carli M, Baviera M, Invernizzi RW, Balducci C (2006). Dissociable contribution of 5-HT1A and 5-HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats. Neuropsychopharmacology314: 757–767. ArticleCAS Google Scholar
Ceglia I, Carli M, Baviera M, Renoldi G, Calcagno E, Invernizzi RW (2004). The 5-HT receptor antagonist M100,907 prevents extracellular glutamate rising in response to NMDA receptor blockade in mPFC. J Neurochem91: 189–199. ArticleCASPubMed Google Scholar
Chudasama Y, Robbins TW (2003). Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci23: 8771–8780. ArticleCASPubMedPubMed Central Google Scholar
Clarke H, Walker S, Dalley J, Robbins T, Roberts A (2007). Cognitive inflexibility after prefrontal depletion is behaviorally and neurochemically specific. Cereb Cortex17: 18–27. ArticleCASPubMed Google Scholar
Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2003). Prefrontal serotonin and serial reversal learning: the effects of serotonin depletion and serotonin 1A receptor manipulation. Presentation at EBPS, Antwerp, Belgium.
Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004). Cognitive inflexibility following prefrontal serotonin depletion. Science304: 878–880. ArticleCASPubMed Google Scholar
Clarke HF, Walker SC, Crofts HS, Dalley JW, Robbins TW, Roberts AC (2005). Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci25: 532–538. ArticleCASPubMedPubMed Central Google Scholar
Cole BJ, Robbins TW (1987). Amphetamine impairs the discriminative performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial reaction time task: new evidence for central dopaminergic-noradrenergic interactions. Psychopharmacology91: 458–466. ArticleCASPubMed Google Scholar
Cole BJ, Robbins TW (1989). Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi on performance of a 5-choice serial reaction time task in rats: implications for theories of selective attention and arousal. Behav Brain Res33: 165–179. ArticleCASPubMed Google Scholar
Cunningham KA, Paris JM, Goeders NE (1992). Serotonin neurotransmission in cocaine sensitization. Ann NY Acad Sci654: 117–127. ArticleCASPubMed Google Scholar
Delgado PL (2000). Future pharmacotherapy for obsessive-compulsive disorder: 5-HT2 agonists and beyond. In: Maj M, Sartorius N, Okasha A, Zohar J (eds). Obsessive-Compulsive Disorder. WPA Series Evidence and Experience in Psychiatry, vol. 4. John Wiley: New York. pp 68–70. Google Scholar
Delgado PL, Moreno FA (1998a). Different roles for serotonin in anti-obsessional drug action and the pathophysiology of obsessive-compulsive disorder. Br J Psychiatry35 (Suppl): 21–25. Article Google Scholar
Delgado PL, Moreno FA (1998b). Halluciogens, serotonin and obsessive-compulsive disorder. J Psychoactive Drugs30: 359–366. ArticleCASPubMed Google Scholar
Di Giovanni G, Di Matteo V, La Grutta V, Esposito E (2001). m-Chlorophenylpiperazine excites non-dopaminergic neurons in the rat substantia nigra and ventral tegmental area by activating serotonin-2C receptors. Neuroscience103: 111–116. ArticleCASPubMed Google Scholar
Di Matteo V, Cacchio M, Di Giulio C, Esposito E (2002). Role of serotonin(2C) receptors in the control of brain dopaminergic function. Pharmacol Biochem Behav71: 727–734. ArticleCASPubMed Google Scholar
Di Matteo V, De Blasi A, Di Giulio C, Esposito E (2001). Role of 5-HT(2C) receptors in the control of central dopamine function. Trends Pharmacol Sci22: 229–232. ArticleCASPubMed Google Scholar
Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E (1999). SB 242084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology38: 1195–1205. ArticleCASPubMed Google Scholar
Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E (2000a). Biochemical and electrophysiological evidence that RO 60-0175 inhibits mesolimbic dopaminergic function through serotonin(2C) receptors. Brain Res865: 85–90. ArticleCASPubMed Google Scholar
Di Matteo V, Di Giovanni G, Esposito E (2000b). SB 242084: a selective 5-HT(2C) receptor antagonist. CNS Drug Rev6: 195–205. ArticleCAS Google Scholar
Dias R, Robbins TW, Roberts AC (1996). Dissociation in prefrontal cortex of affective and attentional shifts. Nature380: 69–72. ArticleCASPubMed Google Scholar
Divac I, Rosvold HE, Szwarcbart MK (1967). Behavioral effects of selective ablation of the caudate nucleus. J Comp Physiol Psychol63: 184–190. ArticleCASPubMed Google Scholar
Doherty MD, Pickel VM (2000). Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res864: 176–185. ArticleCASPubMed Google Scholar
Domeney AM, Costall B, Gerrard PA, Jones DN, Naylor RJ, Tyers MB (1991). The effect of ondansetron on cognitive performance in the marmoset. Pharmacol Biochem Behav38: 169–175. ArticleCASPubMed Google Scholar
Dunnett SB, Iversen SD (1980). Regulatory impairments following selective kainic acid lesions of the neostriatum. Behav Brain Res1: 497–506. ArticleCASPubMed Google Scholar
Eberle-Wang K, Mikeladze Z, Uryu K, Chesselet MF (1997). Pattern of expression of the serotonin2C receptor messenger RNA in the basal ganglia of adult rats. J Comp Neurol384: 233–247. ArticleCASPubMed Google Scholar
El Mansari M, Blier P (2006). Mechanisms of action of current and potential pharmacotherapies of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry30: 362–373. ArticleCASPubMed Google Scholar
Erzegovesi S, Ronchi P, Smeraldi E (1992). 5-HT2 receptor and fluvoxamine effect in obsessive-compulsive disorder. Hum Psychopharmacol7: 287–289. Article Google Scholar
Evenden JL, Robbins TW (1983). Increased response switching, perseveration and perseverative switching following d-amphetamine in the rat. Psychopharmacology80: 67–73. ArticleCASPubMed Google Scholar
Everitt BJ, Robbins TW (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci8: 1481–1489. ArticleCASPubMed Google Scholar
Fellows LK, Farah MJ (2003). Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain126: 1830–1837. ArticlePubMed Google Scholar
Fletcher PJ, Grottick AJ, Higgins GA (2001). Differential effects of the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor antagonist SB242084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine-induced reinstatement of responding. Soc Neurosci Abs27: 441.15. Google Scholar
Fletcher PJ, Grottick AJ, Higgins GA (2002a). Differential effects of the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor antagonist SB242084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine-induced reinstatement of responding. Neuropsychopharmacology27: 576–586. CASPubMed Google Scholar
Fletcher PJ, Korth KM, Robinson SR, Baker GB (2002). Multiple 5-HT receptors are involved in the effects of acute MDMA treatment: studies on locomotor activity and responding for conditioned reinforcement. Psychopharmacology (Berl)162: 282–291. ArticleCAS Google Scholar
Fletcher PJ, Korth KM, Robinson SR, Baker GB (2002b). Multiple 5-HT receptors are involved in the effects of acute MDMA treatment: studies on locomotor activity and responding for conditioned reinforcement. Psychopharmacology (Berl)162: 282–291. ArticleCAS Google Scholar
Floresco SB, Magyar O, Ghods-Sharifi S, Vexelman C, Tse MT (2006). Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology31: 297–309. ArticleCASPubMed Google Scholar
Freedman M, Black S, Ebert P, Binns M (1998). Orbitofrontal function, object alternation and perseveration. Cereb Cortex8: 18–27. ArticleCASPubMed Google Scholar
Gobert A, Millan MJ (1999). Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology38: 315–317. ArticleCASPubMed Google Scholar
Gobert A, Rivet JM, Lejeune F, Newman-Tancredi A, Adhumeau-Auclair A, Nicolas JP et al (2000). Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse36: 205–221. ArticleCASPubMed Google Scholar
Graf M (2006). 5-HT2c receptor activation induces grooming behaviour in rats: possible correlations with obsessive-compulsive disorder. Neuropsychopharmacol Hung8: 23–28. PubMed Google Scholar
Graf M, Kantor S, Anheuer ZE, Modos EA, Bagdy G (2003). m-CPP-induced self-grooming is mediated by 5-HT2C receptors. Behav Brain Res142: 175–179. ArticleCASPubMed Google Scholar
Harrison AA, Everitt BJ, Robbins TW (1997). Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology133: 329–342. ArticleCASPubMed Google Scholar
Higgins GA, Enderlin M, Haman M, Fletcher PJ (2003). The 5-HT2A receptor antagonist M100,907 attenuates motor and ‘impulsive-type’ behaviours produced by NMDA receptor antagonism. Psychopharmacology (Berl)170: 309–319. ArticleCAS Google Scholar
Higgins GA, Fletcher PJ (2003). Serotonin and drug reward: focus on 5-HT2C receptors. Eur J Pharmacol480: 151–162. ArticleCASPubMed Google Scholar
Hutson PH, Barton CL, Jay M, Blurton P, Burkamp F, Clarkson R et al (2000). Activation of mesolimbic dopamine function by phencyclidine is enhanced by 5-HT(2C/2B) receptor antagonists: neurochemical and behavioural studies. Neuropharmacology39: 2318–2328. ArticleCASPubMed Google Scholar
Idris NF, Repeto P, Neill JC, Large CH (2005). Investigation of the effects of lamotrigine and clozapine in improving reversal-learning impairments induced by acute phencyclidine and D-amphetamine in the rat. Psychopharmacology179: 336–348. ArticleCASPubMed Google Scholar
Jentsch JD, Taylor JR (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology146: 373–390. ArticleCASPubMed Google Scholar
Jones B, Mishkin M (1972). Limbic lesions and the problem of stimulus—reinforcement associations. Exp Neurol36: 362–377. ArticleCASPubMed Google Scholar
Jones N, Duxon MS, King SM (2002). 5-HT2C receptor mediation of unconditioned escape behaviour in the unstable elevated exposed plus maze. Psychopharmacology (Berl)164: 214–220. ArticleCAS Google Scholar
Kalivas PW, Volkow ND (2005). The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry162: 1403–1413. ArticlePubMed Google Scholar
Kehne JH, Baron BM, Carr AA, Chaney SF, Elands J, Feldman DJ et al (1996). Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT2A antagonist with a favorable CNS safety profile. J Pharmacol Exp Ther277: 968–981. CASPubMed Google Scholar
Kennedy AJ, Gibson EL, O'Connell MT, Curzon G (1993). Effects of housing, restraint and chronic treatments with mCPP and sertraline on behavioural responses to mCPP. Psychopharmacology113: 262–268. ArticleCASPubMed Google Scholar
Kennett G, Lightowler S, Trail B, Bright F, Bromidge S (2000). Effects of RO 60 0175, a 5-HT(2C) receptor agonist, in three animal models of anxiety. Eur J Pharmacol387: 197–204. ArticleCASPubMed Google Scholar
Kennett GA, Lightowler S, de Biasi V, Stevens NC, Wood MD, Tulloch IF et al (1994). Effect of chronic administration of selective 5-hydroxytryptamine and noradrenaline uptake inhibitors on a putative index of 5-HT2C/2B receptor function. Neuropharmacology33: 1581–1588. ArticleCASPubMed Google Scholar
Kennett GA, Wood MD, Bright F, Trail B, Riley G, Holland V et al (1997). SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology36: 609–620. ArticleCASPubMed Google Scholar
Khullar A, Chue P, Tibbo P (2001). Quetiapine and obsessive-compulsive symptoms (OCS): case report and review of atypical antipsychotic-induced OCS. J Psychiatry Neurosci26: 55–59. CASPubMedPubMed Central Google Scholar
King AR, Martin IL, Melville KA (1974). Reversal learning enhanced by lysergic acid diethylamide (LSD): concomitant rise in brain 5-hydroxytryptamine levels. Br J Pharmacol52: 419–426. ArticleCASPubMedPubMed Central Google Scholar
Kruzich PJ, Grandy DK (2004). Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice. BMC Neurosci5: 12. ArticlePubMedPubMed Central Google Scholar
Lee B, Groman S, London ED, Jentsch JD (2007). Dopamine D(2)/D(3) receptors play a specific role in the reversal of a learned visual discrimination in monkeys. Neuropsychopharmacology, print copy in press (originally published online 14 February 2007; doi:10.1038/sj.npp.1301337).
Liegeois JF, Ichikawa J, Meltzer HY (2002). 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res947: 157–165. ArticleCASPubMed Google Scholar
Lopez-Gimenez JF, Mengod G, Palacios JM, Vilaro MT (1997). Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907. Naunyn Schmiedebergs Arch Pharmacol356: 446–454. ArticleCASPubMed Google Scholar
Maj J, Bijak M, Dziedzicka-Wasylewska M, Rogoz R, Rogz Z, Skuza G et al (1996). The effects of paraxetine given repeatedly on the 5-HT receptor subpopulations in the rat brain. Psychopharmacology127: 73–82. ArticleCASPubMed Google Scholar
Martin JR, Ballard TM, Higgins GA (2002). Influence of the 5-HT2C receptor antagonist, SB-242084, in tests of anxiety. Pharmacol Biochem Behav71: 615–625. ArticleCASPubMed Google Scholar
Martin JR, Bos M, Jenck F, Moreau J, Mutel V, Sleight AJ et al (1998a). 5-HT2C receptor agonists: pharmacological characteristics and therapeutic potential. J Pharmacol Exp Ther286: 913–924. CASPubMed Google Scholar
Martin P, Carlsson ML, Hjorth S (1998b). Systemic PCP treatment elevates brain extracellular 5-HT: a microdialysis study in awake rats. Neuroreport9: 2985–2988. ArticleCASPubMed Google Scholar
McAlonan K, Brown VJ (2003). Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res146: 97–103. ArticlePubMed Google Scholar
Millan MJ, Dekeyne A, Gobert A (1998). Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology37: 953–955. ArticleCASPubMed Google Scholar
Moreno FA, Delgado PL (1997). Hallucinogen-induced relief of obsessions and compulsions. Am J Psychiatry154: 1037–1038. CASPubMed Google Scholar
Murphy FC, Smith KA, Cowen PJ, Robbins TW, Sahakian BJ (2002). The effects of tryptophan depletion on cognitive and affective processing in healthy volunteers. Psychopharmacology163: 42–53. ArticleCASPubMed Google Scholar
Olijslagers JE, Perlstein B, Werkman TR, McCreary AC, Siarey R, Kruse CG et al (2005). The role of 5-HT(2A) receptor antagonism in amphetamine-induced inhibition of A10 dopamine neurons in vitro. Eur J Pharmacol520: 77–85. ArticleCASPubMed Google Scholar
Olijslagers JE, Werkman TR, McCreary AC, Siarey R, Kruse CG, Wadman WJ (2004). 5-HT2 receptors differentially modulate dopamine-mediated auto-inhibition in A9 and A10 midbrain areas of the rat. Neuropharmacology46: 504–510. ArticleCASPubMed Google Scholar
Park SB, Coull JT, McShane RH, Young AH, Sahakian BJ, Robbins TW et al (1994). Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology33: 575–588. ArticleCASPubMed Google Scholar
Pompeiano M, Palacios JM, Mengod G (1994). Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res23: 163–178. ArticleCASPubMed Google Scholar
Porras G, Di Matteo V, Fracasso C, Lucas G, De Deurwaerdere P, Caccia S et al (2002). 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology26: 311–324. ArticleCASPubMed Google Scholar
Ridley RM, Baker HF, Frith CD, Dowdy J, Crow TJ (1998). Stereotyped responding on a two-choice guessing task by marmosets and humans treated with amphetamine. Psychopharmacology95: 560–564. Google Scholar
Ridley RM, Haystead TA, Baker HF (1981). An analysis of visual object reversal learning in the marmoset after amphetamine and haloperidol. Pharmacol Biochem Behav14: 345–351. ArticleCASPubMed Google Scholar
Rogers RD, Andrews TC, Grasby PM, Brooks DJ, Robbins TW (2000). Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. J Cogn Neurosci12: 142–162. ArticleCASPubMed Google Scholar
Rolls ET, Hornak J, Wade D, McGrath J (1994). Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry57: 1518–1524. ArticleCASPubMedPubMed Central Google Scholar
Rosenberg DR, Dick EL, O'Hearn KM, Sweeney JA (1997). Response-inhibition deficits in obsessive-compulsive disorder: an indicator of dysfunction in frontostriatal circuits. J Psychiatry Neurosci22: 29–38. CASPubMedPubMed Central Google Scholar
Sareen J, Kirshner A, Lander M, Kjernisted KD, Eleff MK, Reiss JP (2004). Do antipsychotics ameliorate or exacerbate obsessive compulsive disorder symptoms? A systematic review. J Affect Disord82: 167–174. ArticleCASPubMed Google Scholar
Schmidt CJ, Sullivan CK, Fadayel GM (1994). Blockade of striatal 5-hydroxytryptamine2 receptors reduces the increase in extracellular concentrations of dopamine produced by the amphetamine analogue 3,4-methylenedioxymethamphetamine. J Neurochem62: 1382–1389. ArticleCASPubMed Google Scholar
Schmidtke K, Schorb A, Winkelmann G, Hohagen F (1998). Cognitive frontal lobe dysfunction in obsessive-compulsive disorder. Biol Psychiatry43: 666–673. ArticleCASPubMed Google Scholar
Serretti A, Artioli P, De Ronchi D (2004). The 5-HT2C receptor as a target for mood disorders. Exper Opin Ther Targets8: 15–23. ArticleCAS Google Scholar
Settlage P, Zable M, Harlow HF (1948). Problem solution by monkeys following bilateral removal of the prefrontal areas. VI. Performance on tests requiring contradictory reactions to similar and to identical stimuli. J Exp Psychol38: 50–63. ArticleCASPubMed Google Scholar
Sorensen SM, Kehne JH, Fadayel GM, Humphreys TM, Ketteler HJ, Sullivan CK et al (1993). Characterization of the 5-HT2 receptor antagonist MDL 100907 as a putative atypical antipsychotic: behavioral, electrophysiological and neurochemical studies. J Pharmacol Exp Ther266: 684–691. CASPubMed Google Scholar
Soubrié P (1986). Serotonergic neurons and behaviour. J Pharmacol17: 107–112. PubMed Google Scholar
Stalnaker TA, Franz TM, Singh T, Schoenbaum G (2007). Basolateral amygdala lesions abolish orbitofrontal-dependent reversal impairments. Neuron54: 51–58. ArticleCASPubMed Google Scholar
Stein DJ, Spadaccini E, Hollander E (1995). Meta-analysis of pharmacotherapy trials for obsessive-compulsive disorder. Int Clin Psychopharmacol10: 11–18. ArticleCASPubMed Google Scholar
Tsaltas E, Kontis D, Chrysikakou S, Giannou H, Biba A, Pallidi S et al (2005). Reinforced spatial alternation as an animal model of obsessive-compulsive disorder (OCD): investigation of 5-HT2C and 5-HT1D receptor involvement in OCD pathophysiology. Biol Psychiatry57: 1176–1185. ArticleCASPubMed Google Scholar
van den Bos R, Cools AR (1989). The involvement of the nucleus accumbens in the ability of rats to switch to cue-directed behaviours. Life Sci44: 1697–1704. ArticleCASPubMed Google Scholar
van der Meulen JA, Joosten RN, de Bruin JP, Feenstra MG (2006). Dopamine and noradrenaline efflux in the medial prefrontal cortex during serial reversals and extinction of instrumental goal-directed behavior. Cereb Cortex, print copy in press (originally published online on 18 August 2007; doi:10.1093/cercor/bhl057).
Van Oekelen D, Luyten WH, Leysen JE (2003). 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci72: 2429–2449. ArticleCASPubMed Google Scholar
Veale DM, Sahakian BJ, Owen AM, Marks IM (1996). Specific cognitive deficits in tests sensitive to frontal lobe dysfunction in obsessive-compulsive disorder. Psychol Med26: 1261–1269. ArticleCASPubMed Google Scholar
Weiner I, Feldon J (1986). Reversal and nonreversal shifts under amphetamine. Psychopharmacology89: 355–359. ArticleCASPubMed Google Scholar
Weiner I, Feldon J, Ben-Shahar O (1986). Simultaneous brightness discrimination and reversal: the effects of amphetamine administration in the two stages. Pharmacol Biochem Behav25: 939–942. ArticleCASPubMed Google Scholar
Winstanley CA, Chudasama Y, Dalley JW, Theobald DE, Glennon JC, Robbins TW (2003). Intra-prefrontal 8-OH-DPAT and M100907 improve visuospatial attention and decrease impulsivity on the five-choice serial reaction time task in rats. Psychopharmacology167: 304–314. ArticleCASPubMed Google Scholar
Winstanley CA, Theobald DE, Dalley JW, Glennon JC, Robbins TW (2004). 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology (Berl)176: 376–385. ArticleCAS Google Scholar
Yamauchi M, Tatebayashi T, Nagase K, Kojima M, Imanishi T (2004). Chronic treatment with fluvoxamine desensitizes 5-HT2C receptor-mediated hypolocomotion in rats. Pharmacol Biochem Behav78: 683–689. ArticleCASPubMed Google Scholar