XRCC4 in G1 suppresses homologous recombination in S/G2, in G1 checkpoint-defective cells (original) (raw)
Aladjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R et al. (1998). ES cells do not activate p53-dependent stress responses and undergo p53- independent apoptosis in response to DNA damage. Curr Biol8: 145–155. ArticleCAS Google Scholar
Allen C, Kurimasa A, Brenneman MA, Chen DJ, Nickoloff JA . (2002). DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination. Proc Natl Acad Sci USA99: 3758–3763. ArticleCAS Google Scholar
Amor M, Parker KL, Globerman H, New MI, White PC . (1988). Mutation in the CYP21B gene (Ile-172 – Asn) causes steroid 21- hydroxylase deficiency. Proc Natl Acad Sci USA85: 1600–1604. ArticleCAS Google Scholar
Aten JA, Stap J, Krawczyk PM, van Oven CH, Hoebe RA, Essers J et al. (2004). Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science303: 92–95. ArticleCAS Google Scholar
Audebert M, Salles B, Calsou P . (2004). Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem279: 55117–55126. ArticleCAS Google Scholar
Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J et al. (1999). Current Protocols in Molecular Biology. John Wiley & Sons Inc.: Boston. Google Scholar
Belmaaza A, Chartrand P . (1994). One-sided invasion events in homologous recombination at double-strand breaks. Mutat Res314: 199–208. ArticleCAS Google Scholar
Belmaaza A, Wallenburg JC, Brouillette S, Gusew N, Chartrand P . (1990). Genetic exchange between endogenous and exogenous LINE-1 repetitive elements in mouse cells. Nucleic Acids Res18: 6385–6391. ArticleCAS Google Scholar
Bertrand P, Lambert S, Joubert C, Lopez BS . (2003). Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells. Oncogene22: 7587–7592. ArticleCAS Google Scholar
Bertrand P, Saintigny Y, Lopez BS . (2004). p53's double life: transactivation-independent repression of homologous recombination. Trends Genet20: 235–243. ArticleCAS Google Scholar
Boucher D, Hindo J, Averbeck D . (2004). Increased repair of gamma-induced DNA double-strand breaks at lower dose-rate in CHO cells. Can J Physiol Pharmacol82: 125–132. ArticleCAS Google Scholar
Brouillette S, Chartrand P . (1987). Intermolecular recombination assay for mammalian cells that produces recombinants carrying both homologous and nonhomologous junctions. Mol Cell Biol7: 2248–2255. ArticleCAS Google Scholar
Cheong N, Wang X, Wang Y, Iliakis G . (1994). Loss of S-phase-dependent radioresistance in irs-1 cells exposed to X-rays. Mutat Res314: 77–85. ArticleCAS Google Scholar
Cohen PE, Pollard JW . (2001). Regulation of meiotic recombination and prophase I progression in mammals. Bioessays23: 996–1009. ArticleCAS Google Scholar
Delacote F, Han M, Stamato TD, Jasin M, Lopez BS . (2002). An xrcc4 defect or Wortmannin stimulates homologous recombination specifically induced by double-strand breaks in mammalian cells. Nucleic Acids Res30: 3454–3463. ArticleCAS Google Scholar
Difilippantonio MJ, Petersen S, Chen HT, Johnson R, Jasin M, Kanaar R et al. (2002). Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med196: 469–480. ArticleCAS Google Scholar
Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE et al. (2000). DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature404: 510–514. ArticleCAS Google Scholar
Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M et al. (2005). CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature434: 598–604. ArticleCAS Google Scholar
Fabre F, Boulet A, Roman H . (1984). Gene conversion at different points in the mitotic cycle of Saccharomyces cerevisiae. Mol Gen Genet195: 139–143. ArticleCAS Google Scholar
Ferguson DO, Sekiguchi JM, Chang S, Frank KM, Gao Y, DePinho RA et al. (2000a). The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc Natl Acad Sci USA97: 6630–6633. ArticleCAS Google Scholar
Ferguson DO, Sekiguchi JM, Frank KM, Gao Y, Sharpless NE, Gu Y et al. (2000b). The interplay between nonhomologous end-joining and cell cycle checkpoint factors in development, genomic stability, and tumorigenesis. Cold Spring Harb Symp Quant Biol65: 395–403. ArticleCAS Google Scholar
Guirouilh-Barbat J, Huck S, Bertrand P, Pirzio L, Desmaze C, Sabatier L et al. (2004). Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol Cell14: 611–623. ArticleCAS Google Scholar
Haaf T, Golub EI, Reddy G, Radding CM, Ward DC . (1995). Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc Natl Acad Sci USA92: 2298–2302. ArticleCAS Google Scholar
Hinz JM, Yamada NA, Salazar EP, Tebbs RS, Thompson LH . (2005). Influence of double-strand-break repair pathways on radiosensitivity throughout the cell cycle in CHO cells. DNA Repair (Amsterdam)4: 782–792. ArticleCAS Google Scholar
Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W et al. (2004). DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature431: 1011–1017. ArticleCAS Google Scholar
Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J et al. (2006). ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol8: 37–45. ArticleCAS Google Scholar
Jeggo PA . (1990). Studies on mammalian mutants defective in rejoining double-strand breaks in DNA. Mutat Res239: 1–16. ArticleCAS Google Scholar
Jeggo PA, Taccioli GE, Jackson SP . (1995). Menage a trois: double strand break repair, V(D)J recombination and DNA- PK. Bioessays17: 949–957. ArticleCAS Google Scholar
Johnson RD, Jasin M . (2000). Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J19: 3398–3407. ArticleCAS Google Scholar
Jung D, Alt FW . (2004). Unraveling V(D)J recombination; insights into gene regulation. Cell116: 299–311. ArticleCAS Google Scholar
Kadyk LC, Hartwell LH . (1992). Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics132: 387–402. CASPubMedPubMed Central Google Scholar
Kim JS, Krasieva TB, Kurumizaka H, Chen DJ, Taylor AM, Yokomori K . (2005). Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells. J Cell Biol170: 341–347. ArticleCAS Google Scholar
Kleckner N . (1996). Meiosis: how could it work? Proc Natl Acad Sci USA93: 8167–8174. ArticleCAS Google Scholar
Kraus E, Leung WY, Haber JE . (2001). Break-induced replication: a review and an example in budding yeast. Proc Natl Acad Sci USA98: 8255–8262. ArticleCAS Google Scholar
Lambert S, Lopez BS . (2000). Characterization of mammalian RAD51 double strand break repair using non lethal dominant negative forms. EMBO J19: 3090–3099. ArticleCAS Google Scholar
Lee SE, Mitchell RA, Cheng A, Hendrickson EA . (1997). Evidence for DNA-PK-dependent and -independent DNA double-strand break repair pathways in mammalian cells as a function of the cell cycle. Mol Cell Biol17: 1425–1433. ArticleCAS Google Scholar
Liang F, Han M, Romanienko PJ, Jasin M . (1998). Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA95: 5172–5177. ArticleCAS Google Scholar
Liu N, Lamerdin JE, Tebbs RS, Schild D, Tucker JD, Shen MR et al. (1998). XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol Cell1: 783–793. ArticleCAS Google Scholar
Malkova A, Naylor ML, Yamaguchi M, Ira G, Haber JE . (2005). RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol Cell Biol25: 933–944. ArticleCAS Google Scholar
Mills KD, Ferguson DO, Essers J, Eckersdorff M, Kanaar R, Alt FW . (2004). Rad54 and DNA ligase IV cooperate to maintain mammalian chromatid stability. Genes Dev18: 1283–1292. ArticleCAS Google Scholar
Pierce AJ, Hu P, Han M, Ellis N, Jasin M . (2001). Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev15: 3237–3242. ArticleCAS Google Scholar
Purandare SM, Patel PI . (1997). Recombination hot spots and human disease. Genome Res7: 773–786. ArticleCAS Google Scholar
Raderschall E, Golub EI, Haaf T . (1999). Nuclear foci of mammalian recombination proteins are located at single- stranded DNA regions formed after DNA damage. Proc Natl Acad Sci USA96: 1921–1926. ArticleCAS Google Scholar
Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W . (2002). Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev12: 162–169. ArticleCAS Google Scholar
Richardson C, Jasin M . (2000a). Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol Cell Biol20: 9068–9075. ArticleCAS Google Scholar
Richardson C, Jasin M . (2000b). Frequent chromosomal translocations induced by DNA double-strand breaks. Nature405: 697–700. ArticleCAS Google Scholar
Rodrigue A, Lafrance M, Gauthier MC, McDonald D, Hendzel M, West SC et al. (2006). Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO J25: 222–231. ArticleCAS Google Scholar
Rothkamm K, Kruger I, Thompson LH, Lobrich M . (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol23: 5706–5715. ArticleCAS Google Scholar
Rothstein R, Michel B, Gangloff S . (2000). Replication fork pausing and recombination or ‘gimme a break’. Genes Dev14: 1–10. CASPubMed Google Scholar
Saintigny Y, Delacote F, Vares G, Petitot F, Lambert S, Averbeck D et al. (2001). Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J20: 3861–3870. ArticleCAS Google Scholar
Saleh-Gohari N, Helleday T . (2004). Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res32: 3683–3688. ArticleCAS Google Scholar
Sambrook J, Fritsch EF, Maniatis T . (1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press: Cold Spring Harbor. Google Scholar
Smith GC, Jackson SP . (1999). The DNA-dependent protein kinase. Genes Dev13: 916–934. ArticleCAS Google Scholar
Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H et al. (1998). Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J17: 598–608. ArticleCAS Google Scholar
Stamato TD, Dipatri A, Giaccia A . (1988). Cell-cycle-dependent repair of potentially lethal damage in the XR-1 gamma-ray-sensitive Chinese hamster ovary cell. Radiat Res115: 325–333. ArticleCAS Google Scholar
Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H et al. (1998). Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J17: 5497–5508. ArticleCAS Google Scholar
Tashiro S, Walter J, Shinohara A, Kamada N, Cremer T . (2000). Rad51 accumulation at sites of DNA damage and in postreplicative chromatin. J Cell Biol150: 283–291. ArticleCAS Google Scholar
Vanasse GJ, Halbrook J, Thomas S, Burgess A, Hoekstra MF, Disteche CM et al. (1999). Genetic pathway to recurrent chromosome translocations in murine lymphoma involves V(D)J recombinase. J Clin Invest103: 1669–1675. ArticleCAS Google Scholar
Wang H, Perrault AR, Takeda Y, Qin W, Iliakis G . (2003). Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res31: 5377–5388. ArticleCAS Google Scholar
Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F et al. (2005). DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res65: 4020–4030. ArticleCAS Google Scholar
Wang H, Zeng ZC, Perrault AR, Cheng X, Qin W, Iliakis G . (2001). Genetic evidence for the involvement of DNA ligase IV in the DNA-PK-dependent pathway of non-homologous end joining in mammalian cells. Nucleic Acids Res29: 1653–1660. ArticleCAS Google Scholar
Yuan SS, Chang HL, Lee EY . (2003). Ionizing radiation-induced Rad51 nuclear focus formation is cell cycle-regulated and defective in both ATM(−/−) and c-Abl(−/−) cells. Mutat Res525: 85–92. ArticleCAS Google Scholar
Zhu C, Mills KD, Ferguson DO, Lee C, Manis J, Fleming J et al. (2002). Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell109: 811–821. ArticleCAS Google Scholar