From Tpr-Met to Met, tumorigenesis and tubes (original) (raw)
Abella JV, Peschard P, Naujokas MA, Lin T, Saucier C, Urbe S et al. (2005). Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol Cell Biol25: 9632–9645. CASPubMedPubMed Central Google Scholar
Bache KG, Slagsvold T, Stenmark H . (2004). Defective downregulation of receptor tyrosine kinases in cancer. EMBO J23: 2707–2712. CASPubMedPubMed Central Google Scholar
Bao J, Gur G, Yarden Y . (2003). Src promotes destruction of c-Cbl: implications for oncogenic synergy between Src and growth factor receptors. Proc Natl Acad Sci USA100: 2438–2443. CASPubMedPubMed Central Google Scholar
Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF . (2003). Met, metastasis, motility and more. Nat Rev Mol Cell Biol4: 915–925. CASPubMed Google Scholar
Borowiak M, Garratt AN, Wustefeld T, Strehle M, Trautwein C, Birchmeier C . (2004). Met provides essential signals for liver regeneration. Proc Natl Acad Sci USA101: 10608–10613. CASPubMedPubMed Central Google Scholar
Bottaro DP, Rubin JS, Faletto DL, Chan A-L, Kmiecik TE, Vande Woude GF et al. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science251: 802–804. CASPubMed Google Scholar
Brinkmann V, Foroutan H, Sachs M, Weidner KM, Birchmeier W . (1995). Hepatocyte growth factor/scatter factor induces a variety of tissue-specific morphogenic programs in epithelial cells. J Cell Biol131: 1573–1586. CASPubMed Google Scholar
Buchberger A . (2002). From UBA to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol12: 216–221. CASPubMed Google Scholar
Carter S, Urbe S, Clague MJ . (2004). The met receptor degradation pathway: requirement for Lys48-linked polyubiquitin independent of proteasome activity. J Biol Chem279: 52835–52839. CASPubMed Google Scholar
Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM et al. (1984). Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature311: 29–33. CASPubMed Google Scholar
Crepaldi T, Gautreau A, Comoglio PM, Louvard D, Arpin M . (1997). Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J Cell Biol138: 423–434. CASPubMedPubMed Central Google Scholar
Davies GC, Ettenberg SA, Coats AO, Mussante M, Ravichandran S, Collins J et al. (2004). Cbl-b interacts with ubiquitinated proteins; differential functions of the UBA domains of c-Cbl and Cbl-b. Oncogene23: 7104–7115. CASPubMed Google Scholar
Dean M, Park M, Vande Woude GF . (1987). Characterization of the rearranged tpr-met oncogene breakpoint. Mol Cell Biol7: 921–924. CASPubMedPubMed Central Google Scholar
Duan L, Miura Y, Dimri M, Majumder B, Dodge IL, Reddi AL et al. (2003). Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis. J Biol Chem278: 28950–28960. CASPubMed Google Scholar
Ebens A, Brose K, Leonardo ED, Hanson MG, Bladt F, Birchmeier C et al. (1996). Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron17: 1157–1172. CASPubMed Google Scholar
Fixman ED, Fournier TM, Kamikura DM, Naujokas MA, Park M . (1996). Pathways downstream of Shc and Grb2 are required for cell transformation by the Tpr-Met oncoprotein. J Biol Chem271: 13116–13122. CASPubMed Google Scholar
Fixman ED, Naujokas MA, Rodrigues GA, Moran MF, Park M . (1995). Efficient cell transformation by the Tpr-Met oncoprotein is dependent upon tyrosine 489 in the carboxy-terminus. Oncogene10: 237–249. CASPubMed Google Scholar
Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V et al. (2006). Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells24: 23–33. CASPubMed Google Scholar
Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D et al. (2002). The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol4: 720–724. CASPubMed Google Scholar
Grant DS, Kleinman HK, Goldberg ID, Bhargava MM, Nickoloff BJ, Kinsella JL et al. (1993). Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci USA90: 1937–1941. CASPubMedPubMed Central Google Scholar
Graveel C, Su Y, Koeman J, Wang LM, Tessarollo L, Fiscella M et al. (2004). Activating Met mutations produce unique tumor profiles in mice with selective duplication of the mutant allele. Proc Natl Acad Sci USA101: 17198–17203. CASPubMedPubMed Central Google Scholar
Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I . (2003). Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol5: 461–466. CASPubMed Google Scholar
Hammond DE, Carter S, McCullough J, Urbe S, Vande Woude G, Clague MJ . (2003). Endosomal dynamics of Met determine signaling output. Mol Biol Cell14: 1346–1354. CASPubMedPubMed Central Google Scholar
Herbst R, Munemitsu S, Ullrich A . (1995). Oncogenic activation of v-kit involves deletion of a putative tyrosine- substrate interaction site. Oncogene10: 369–379. CASPubMed Google Scholar
Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A . (2006). Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell21: 737–748. CASPubMed Google Scholar
Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA, Thorgeirsson SS . (2004). Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci USA101: 4477–4482. CASPubMedPubMed Central Google Scholar
Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T . (2000). Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol20: 3695–3704. CASPubMedPubMed Central Google Scholar
Jeffers M, Fiscella M, Webb CP, Anver M, Koochekpour S, Vande Woude GF . (1998). The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci USA95: 14417–14422. CASPubMedPubMed Central Google Scholar
Jeffers M, Rong S, Vande Woude GF . (1996). Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-met signalling in human cells concomitant with induction of the urokinase proteolysis network. Mol Cell Biol16: 1115–1125. CASPubMedPubMed Central Google Scholar
Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T et al. (1997a). Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci USA94: 11445–11450. CASPubMedPubMed Central Google Scholar
Jeffers M, Taylor GA, Weidner KM, Omura S, Vande Woude GF . (1997b). Degradation of the Met tyrosine kinase receptor by the ubiquitin-proteasome pathway. Mol Cell Biol17: 799–808. CASPubMedPubMed Central Google Scholar
Jiang X, Huang F, Marusyk A, Sorkin A . (2003). Grb2 regulates internalization of EGF receptors through clathrin-coated pits. Mol Biol Cell14: 858–870. CASPubMedPubMed Central Google Scholar
Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC . (1999). The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase [see comments]. Science286: 309–312. CASPubMed Google Scholar
Kamei T, Matozaki T, Sakisaka T, Kodama A, Yokoyama S, Peng YF et al. (1999). Coendocytosis of cadherin and c-Met coupled to disruption of cell–cell adhesion in MDCK cells – regulation by Rho, Rac and Rab small G proteins. Oncogene18: 6776–6784. CASPubMed Google Scholar
Katzmann DJ, Babst M, Emr SD . (2001). Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell106: 145–155. CASPubMed Google Scholar
Keane MM, Ettenberg SA, Nau MM, Banerjee P, Cuello M, Penninger J et al. (1999). cbl-3: a new mammalian cbl family protein. Oncogene18: 3365–3375. CASPubMed Google Scholar
Khoury H, Naujokas MA, Zuo D, Sangwan V, Frigault MM, Petkiewicz S et al. (2005). HGF converts ErbB2/Neu epithelial morphogenesis to cell invasion. Mol Biol Cell16: 550–561. CASPubMedPubMed Central Google Scholar
Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N et al. (2006). Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res66: 283–289. CASPubMed Google Scholar
Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA101: 4966–4971. CASPubMedPubMed Central Google Scholar
Lamorte L, Park M . (2001). The receptor tyrosine kinases: role in cancer progression. Surg Oncol Clin N Am10: 271–288, viii. CASPubMed Google Scholar
Lamorte L, Rodrigues S, Naujokas M, Park M . (2002a). Crk synergizes with epidermal growth factor for epithelial invasion and morphogenesis and is required for the met morphogenic program. J Biol Chem277: 37904–37911. CASPubMed Google Scholar
Lamorte L, Royal I, Naujokas M, Park M . (2002b). Crk adapter proteins promote an epithelial-mesenchymal-like transition and are required for HGF-mediated cell spreading and breakdown of epithelial adherens junctions. Mol Biol Cell13: 1449–1461. CASPubMedPubMed Central Google Scholar
Lee CC, Putnam AJ, Miranti CK, Gustafson M, Wang LM, Vande Woude GF et al. (2004). Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene23: 5193–5202. CASPubMed Google Scholar
Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M et al. (2000). A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene19: 4947–4953. CASPubMed Google Scholar
Lock LS, Frigault MM, Saucier C, Park M . (2003). Grb2-indpendent recruitment of Gab1 requires the C-terminal lobe and structural integrity of the Met receptor kinase domain. J Biol Chem278: 30083–30090. CASPubMed Google Scholar
Lock LS, Maroun CR, Naujokas MA, Park M . (2002). Distinct recruitment and function of Gab1 and Gab2 in Met receptor-mediated epithelial morphogenesis. Mol Biol Cell13: 2132–2146. CASPubMedPubMed Central Google Scholar
Lock LS, Royal I, Naujokas MA, Park M . (2000). Identification of an atypical grb2 carboxyl-terminal SH3 domain binding site in gab docking proteins reveals Grb2-dependent and -independent recruitment of gab1 to receptor tyrosine kinases [In Process Citation]. J Biol Chem275: 31536–31545. CASPubMed Google Scholar
Longva KE, Blystad FD, Stang E, Larsen AM, Johannessen LE, Madshus IH . (2002). Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J Cell Biol156: 843–854. CASPubMedPubMed Central Google Scholar
Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA et al. (2005). Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res65: 1479–1488. CASPubMed Google Scholar
Ma PC, Kijima T, Maulik G, Fox EA, Sattler M, Griffin JD et al. (2003). c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res63: 6272–6281. CASPubMed Google Scholar
Machide M, Hashigasako A, Matsumoto K, Nakamura T . (2006). Contact inhibition of hepatocyte growth regulated by functional association of the c-Met/hepatocyte growth factor receptor and LAR protein-tyrosine phosphatase. J Biol Chem281: 8765–8772. CASPubMed Google Scholar
Maina F, Hilton MC, Ponzetto C, Davies AM, Klein R . (1997). Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev11: 3341–3350. CASPubMedPubMed Central Google Scholar
Mancini A, Koch A, Wilms R, Tamura T . (2002). c-Cbl associates directly with the C-terminal tail of the receptor for the macrophage colony-stimulating factor, c-Fms, and down-modulates this receptor but not the viral oncogene v-Fms. J Biol Chem277: 14635–14640. CASPubMed Google Scholar
Marmor MD, Yarden Y . (2004). Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene23: 2057–2070. CASPubMed Google Scholar
Maroun CR, Holgado-Madruga M, Royal I, Naujokas MA, Fournier TM, Wong AJ et al. (1999). The Gab1 PH domain is required for localization of Gab1 at sites of cell–cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol19: 1784–1799. CASPubMedPubMed Central Google Scholar
Maroun CR, Naujokas MA, Park M . (2003). Membrane targeting of Grb2-associated binder-1 (Gab1) scaffolding protein through Src myristoylation sequence substitutes for Gab1 pleckstrin homology domain and switches an epidermal growth factor response to an invasive morphogenic program. Mol Biol Cell14: 1691–1708. CASPubMedPubMed Central Google Scholar
Maroun CR, Naujokas MA, Holgado-Madruga M, Wong AJ, Park M . (2000). The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol20: 8513–8525. CASPubMedPubMed Central Google Scholar
Matsumoto K, Nakamura T . (2001). Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int59: 2023–2038. CASPubMed Google Scholar
Michalopoulos GK, DeFrances MC . (1997). Liver regeneration. Science276: 60–66. CASPubMed Google Scholar
Montesano R, Matsumodo K, Nakamura T, Orci L . (1991). Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell67: 901–908. CASPubMed Google Scholar
Mosesson Y, Shtiegman K, Katz M, Zwang Y, Vereb G, Szollosi J et al. (2003). Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J Biol Chem278: 21323–21326. CASPubMed Google Scholar
Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H . (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest106: 1511–1519. CASPubMedPubMed Central Google Scholar
Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A et al. (1989). Molecular cloning and expression of human hepatocyte growth factor. Nature342: 440–443. CASPubMed Google Scholar
Neuss S, Becher E, Woltje M, Tietze L, Jahnen-Dechent W . (2004). Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells22: 405–414. CASPubMed Google Scholar
Nguyen L, Holgado-Madruga M, Maroun C, Fixman ED, Kamikura D, Fournier T et al. (1997). Association of the multisubstrate docking protein Gab1 with the hepatocyte growth factor receptor requires a functional Grb2 binding site involving tyrosine 1356. J Biol Chem272: 20811–20819. CASPubMed Google Scholar
Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H . (2002). CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev16: 3074–3086. CASPubMedPubMed Central Google Scholar
Otsuka T, Takayama H, Sharp R, Celli G, LaRochelle WJ, Bottaro DP et al. (1998). c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res58: 5157–5167. CASPubMed Google Scholar
Palka HL, Park M, Tonks NK . (2003). Hepatocyte growth factor receptor tyrosine kinase met is a substrate of the receptor protein-tyrosine phosphatase DEP-1. J Biol Chem278: 5728–5735. CASPubMed Google Scholar
Park M, Dean M, Cooper CS, Schmidt M, O'Brien SJ, Blair DG et al. (1986). Mechanism of met oncogene activation. Cell45: 895–904. CASPubMed Google Scholar
Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude G . (1987). Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci USA84: 6379–6383. CASPubMedPubMed Central Google Scholar
Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY et al. (2001). Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell8: 995–1004. CASPubMed Google Scholar
Peschard P, Ishiyama N, Lin T, Lipkowitz S, Park M . (2004). A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J Biol Chem279: 29565–29571. CASPubMed Google Scholar
Peschard P, Park M . (2003). Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell3: 519–523. CASPubMed Google Scholar
Pollack AL, Runyan RB, Mostov KE . (1998). Morphogenetic mechanisms of epithelial tubulogenesis: MDCK cell polarity is transiently rearranged without loss of cell–cell contact during scatter factor/hepatocyte growth factor-induced tubulogenesis. Dev Biol204: 64–79. CASPubMed Google Scholar
Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S et al. (1994). A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell77: 261–271. CASPubMed Google Scholar
Rahimi N, Hung W, Tremblay E, Saulnier R, Elliott B . (1998). c-Src kinase activity is required for hepatocyte growth factor-induced motility and anchorage-independent growth of mammary carcinoma cells. J Biol Chem273: 33714–33721. CASPubMed Google Scholar
Raiborg C, Bache KG, Gillooly DJ, Madshus IH, Stang E, Stenmark H . (2002). Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol4: 394–398. CASPubMed Google Scholar
Raiborg C, Rusten TE, Stenmark H . (2003). Protein sorting into multivesicular endosomes. Curr Opin Cell Biol15: 446–455. CASPubMed Google Scholar
Rodrigues GA, Park M . (1993). Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol Cell Biol13: 6711–6722. CASPubMedPubMed Central Google Scholar
Rodrigues GA, Park M . (1994). Oncogenic activation of tyrosine kinases. Curr Opin Genet Dev4: 15–24. CASPubMed Google Scholar
Rodrigues SP, Fathers KE, Chan G, Zuo D, Halwani F, Meterissian S et al. (2005). CrkI and CrkII function as key signaling integrators for migration and invasion of cancer cells. Mol Cancer Res3: 183–194. CASPubMed Google Scholar
Rong S, Segal S, Anver M, Resau JH, Vande Woude GF . (1994). Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc Natl Acad Sci USA91: 4731–4735. CASPubMedPubMed Central Google Scholar
Ronsin C, Muscatelli F, Mattei MG, Breathnach R . (1993). A novel putative receptor protein tyrosine kinase of the met family. Oncogene8: 1195–1202. CASPubMed Google Scholar
Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M . (2000). Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell11: 1709–1725. CASPubMedPubMed Central Google Scholar
Sachs M, Brohmann H, Zechner D, Muller T, Hulsken J, Walther I et al. (2000). Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol150: 1375–1384. CASPubMedPubMed Central Google Scholar
Sangwan V, Paliouras GN, Cheng A, Dube N, Tremblay ML, Park M . (2006). Protein-tyrosine phosphatase 1B deficiency protects against Fas-induced hepatic failure. J Biol Chem281: 221–228. CASPubMed Google Scholar
Saucier C, Khoury H, Lai KM, Peschard P, Dankort D, Naujokas MA et al. (2004). The Shc adaptor protein is critical for VEGF induction by Met/HGF and ErbB2 receptors and for early onset of tumor angiogenesis. Proc Natl Acad Sci USA101: 2345–2350. CASPubMedPubMed Central Google Scholar
Saucier C, Papavasiliou V, Palazzo A, Naujokas MA, Kremer R, Park M . (2002). Use of signal specific receptor tyrosine kinase oncoproteins reveals that pathways downstream from Grb2 or Shc are sufficient for cell transformation and metastasis. Oncogene21: 1800–1811. CASPubMed Google Scholar
Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W . (2000). Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol149: 1419–1432. CASPubMedPubMed Central Google Scholar
Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M et al. (1995). Scatter factor/hepatocyte growth factor is essential for liver development. Nature373: 699–702. CASPubMed Google Scholar
Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P et al. (1997). Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet16: 68–73. CASPubMed Google Scholar
Schmidt L, Junker K, Weirich G, Glenn G, Choyke P, Lubensky I et al. (1998). Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto-oncogene. Cancer Res58: 1719–1722. CASPubMed Google Scholar
Shen Y, Naujokas M, Park M, Ireton K . (2000). InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell103: 501–510. CASPubMed Google Scholar
Stoker M, Gherardi E, Gray J . (1987). Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature327: 239–242. CASPubMed Google Scholar
Sun H, Shen Y, Dokainish H, Holgado-Madruga M, Wong A, Ireton K . (2005). Host adaptor proteins Gab1 and CrkII promote InlB-dependent entry of Listeria monocytogenes. Cell Microbiol7: 443–457. CASPubMed Google Scholar
Thien CB, Langdon WY . (2001). Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol2: 294–307. CASPubMed Google Scholar
Thiery JP . (2003). Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol15: 740–746. CASPubMed Google Scholar
Trusolino L, Bertotti A, Comoglio PM . (2001). A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell107: 643–654. CASPubMed Google Scholar
Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T et al. (1995). Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature373: 702–705. CASPubMed Google Scholar
Urbe S, Mills IG, Stenmark H, Kitamura N, Clague MJ . (2000). Endosomal localization and receptor dynamics determine tyrosine phosphorylation of hepatocyte growth factor-regulated tyrosine kinase substrate. Mol Cell Biol20: 7685–7692. CASPubMedPubMed Central Google Scholar
Wang R, Ferrell LD, Faouzi S, Maher JJ, Bishop JM . (2001). Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol153: 1023–1034. CASPubMedPubMed Central Google Scholar
Weidner KM, Di Cesare S, Sachs M, Brinkmann V, Behrens J, Birchmeier W . (1996). Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature384: 173–176. CASPubMed Google Scholar
Weidner KM, Sachs M, Birchmeier W . (1993). The met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. Journal of Cell Biology121: 145–154. CAS Google Scholar
Weidner KM, Sachs M, Riethmacher D, Birchmeier W . (1995). Mutation of juxtamembrane tyrosine residue 1001 suppresses loss-of-function mutations of the met receptor in epithelial cells. Proc Natl Acad Sci USA92: 2597–2601. CASPubMedPubMed Central Google Scholar
Wong ES, Fong CW, Lim J, Yusoff P, Low BC, Langdon WY et al. (2002). Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J21: 4796–4808. CASPubMedPubMed Central Google Scholar
Wu WJ, Tu S, Cerione RA . (2003). Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell114: 715–725. CASPubMed Google Scholar
Yamasaki S, Nishida K, Yoshida Y, Itoh M, Hibi M, Hirano T . (2003). Gab1 is required for EGF receptor signaling and the transformation by activated ErbB2. Oncogene22: 1546–1556. CASPubMed Google Scholar
Yang XM, Park M . (1995). Expression of the hepatocyte growth factor/scatter factor receptor tyrosine kinase is localized to epithelia in the adult mouse. Lab Invest73: 483–491. CASPubMed Google Scholar
Yokouchi M, Kondo T, Houghton A, Bartkiewicz M, Horne WC, Zhang H et al. (1999). Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J Biol Chem274: 31707–31712. CASPubMed Google Scholar
Zarnegar R, Michalopoulos G . (1989). Purification and biological characterization of human hepatopoietin A, a polypetide growth factor for hepatocytes. Cancer Res49: 3314–3320. CASPubMed Google Scholar
Zhang YW, Su Y, Volpert OV, Vande Woude GF . (2003). Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci USA100: 12718–12723. CASPubMedPubMed Central Google Scholar
Zhu H, Naujokas MA, Park M . (1994b). Receptor chimeras indicate that the Met tyrosine kinase mediates the motility and morphogenic responses of hepatocyte growth/scatter factor. Cell Growth Differen5: 359–366. CAS Google Scholar
Zhu H, Naujokas MA, Fixman ED, Torossian K, Park M . (1994a). Tyrosine 1356 in the carboxyl-terminal tail of the HGF/SF receptor is essential for the transduction of signals for cell motility and morphogenesis. J Biol Chem269: 29943–29948. CASPubMed Google Scholar