Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes (original) (raw)
Aoki M, Hamada F, Sugimoto T, Sumida S, Akiyama T, Toyoshima K . (1993). The human cot proto-oncogene encodes two protein serine/threonine kinases with different transforming activities by alternative initiation of translation. J Biol Chem268: 22723–22732. CASPubMed Google Scholar
Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N et al. (2006). Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer5: 29. ArticleCASPubMedPubMed Central Google Scholar
Banerjee A, Gugasyan R, McMahon M, Gerondakis S . (2006). Diverse toll-like receptors utilize Tpl2 to activate extracellular signal-regulated kinase (ERK) in hemopoietic cells. Proc Natl Acad Sci USA103: 3274–3279. ArticleCASPubMedPubMed Central Google Scholar
Baylin SB . (2005). DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol2 (Suppl 1): S4–S11. ArticleCASPubMed Google Scholar
Calin GA, Croce CM . (2006a). MicroRNA signatures in human cancers. Nat Rev Cancer6: 857–866. ArticleCASPubMed Google Scholar
Calin GA, Croce CM . (2006b). MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene25: 6202–6210. ArticleCASPubMed Google Scholar
Chiariello M, Marinissen MJ, Gutkind JS . (2000). Multiple mitogen-activated protein kinase signaling pathways connect the cot oncoprotein to the c-jun promoter and to cellular transformation. Mol Cell Biol20: 1747–1758. ArticleCASPubMedPubMed Central Google Scholar
Eliopoulos AG, Davies C, Blake SS, Murray P, Najafipour S, Tsichlis PN et al. (2002). The oncogenic protein kinase Tpl-2/Cot contributes to Epstein-Barr virus-encoded latent infection membrane protein 1-induced NF-kappaB signaling downstream of TRAF2. J Virol76: 4567–4579. ArticleCASPubMedPubMed Central Google Scholar
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F . (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J374 (Part 1): 1–20. ArticleCASPubMedPubMed Central Google Scholar
Hodge DR, Peng B, Cherry JC, Hurt EM, Fox SD, Kelley JA et al. (2005). Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res65: 4673–4682. ArticleCASPubMed Google Scholar
Hodge DR, Xiao W, Clausen PA, Heidecker G, Szyf M, Farrar WL . (2001). Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells. J Biol Chem276: 39508–39511. ArticleCASPubMed Google Scholar
Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z et al. (2004). A combined computational-experimental approach predicts human microRNA targets. Genes Dev18: 1165–1178. ArticleCASPubMedPubMed Central Google Scholar
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. (2005). Combinatorial microRNA target predictions. Nat Genet37: 495–500. ArticleCASPubMed Google Scholar
Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120: 15–20. ArticleCASPubMed Google Scholar
Makris A, Patriotis C, Bear SE, Tsichlis PN . (1993). Genomic organization and expression of Tpl-2 in normal cells and Moloney murine leukemia virus-induced rat T-cell lymphomas: activation by provirus insertion. J Virol67: 4283–4289. CASPubMedPubMed Central Google Scholar
Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT et al. (2006a). Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology130: 2113–2129. ArticleCASPubMed Google Scholar
Meng F, Yamagiwa Y, Taffetani S, Han J, Patel T . (2005). IL-6 activates serum and glucocorticoid kinase via p38alpha mitogen-activated protein kinase pathway. Am J Physiol Cell Physiol289: C971–C981. ArticleCASPubMed Google Scholar
Meng F, Yamagiwa Y, Ueno Y, Patel T . (2006b). Over-expression of interleukin-6 enhances cell survival and transformed cell growth in human malignant cholangiocytes. J Hepatol44: 1055–1065. ArticleCASPubMed Google Scholar
Ohara R, Hirota S, Onoue H, Nomura S, Kitamura Y, Toyoshima K . (1995). Identification of the cells expressing cot proto-oncogene mRNA. J Cell Sci108 (Part 1): 97–103. CASPubMed Google Scholar
Okada K, Shimizu Y, Nambu S, Higuchi K, Watanabe A . (1994). Interleukin-6 functions as an autocrine growth factor in a cholangiocarcinoma cell line. J Gastroenterol Hepatol9: 462–467. ArticleCASPubMed Google Scholar
Park J, Tadlock L, Gores GJ, Patel T . (1999). Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line. Hepatology30: 1128–1133. ArticleCASPubMed Google Scholar
Patel T . (2006). Cholangiocarcinoma. Nat Clin Pract Gastroenterol Hepatol3: 33–42. ArticlePubMed Google Scholar
Patriotis C, Makris A, Bear SE, Tsichlis PN . (1993). Tumor progression locus 2 (Tpl-2) encodes a protein kinase involved in the progression of rodent T-cell lymphomas and in T-cell activation. Proc Natl Acad Sci USA90: 2251–2255. ArticleCASPubMedPubMed Central Google Scholar
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N et al. (2003). TM4: a free, open-source system for microarray data management and analysis. Biotechniques34: 374–378. ArticleCASPubMed Google Scholar
Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA et al. (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell9: 435–443. ArticleCASPubMed Google Scholar
Sourvinos G, Tsatsanis C, Spandidos DA . (1999). Overexpression of the Tpl-2/Cot oncogene in human breast cancer. Oncogene18: 4968–4973. ArticleCASPubMed Google Scholar
Tadlock L, Patel T . (2001). Involvement of p38 mitogen-activated protein kinase signaling in transformed growth of a cholangiocarcinoma cell line. Hepatology33: 43–51. ArticleCASPubMed Google Scholar
Takai D, Jones PA . (2002). Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA99: 3740–3745. ArticleCASPubMedPubMed Central Google Scholar
Wehbe H, Henson R, Meng F, Mize-Berge J, Patel T . (2006). Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res66: 10517–10524. ArticleCASPubMed Google Scholar
Yamagiwa Y, Marienfeld C, Tadlock L, Patel T . (2003). Translational regulation by p38 mitogen-activated protein kinase signaling during human cholangiocarcinoma growth. Hepatology38: 158–166. ArticleCASPubMed Google Scholar