Ozone—climate interactions and effects on solar ultraviolet radiation (original) (raw)
References
See the Photochem. Photobiol. Sci. themed issue entitled: Environmental effects of ozone depletion and its interaction with climate change: 2018 assessment, Photochem. Photobiol. Sci., 2019, 18(3).
A. F. Bais, R. L. McKenzie, G. Bernhard, P. J. Aucamp, M. Ilyas, S. Madronich and K. Tourpali, Ozone depletion and climate change: Impacts on UV radiation, Photochem. Photobiol. Sci., 2015, 14, 19–52. ArticleCASPubMed Google Scholar
G. L. Manney, M. L. Santee, M. Rex, N. J. Livesey, M. C. Pitts, P. Veefkind, E. R. Nash, I. Wohltmann, R. Lehmann, L. Froidevaux, L. R. Poole, M. R. Schoeberl, D. P. Haffner, J. Davies, V. Dorokhov, H. Gernandt, B. Johnson, R. Kivi, E. Kyro, N. Larsen, P. F. Levelt, A. Makshtas, C. T. McElroy, H. Nakajima, M. C. Parrondo, D. W. Tarasick, P. von der Gathen, K. A. Walker and N. S. Zinoviev, Unprecedented Arctic ozone loss in 2011, Nature, 2011, 478, 469–475. ArticleCASPubMed Google Scholar
WMO, Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project, Geneva, Switzerland, 2018, in press.
M. Weber, M. Coldewey-Egbers, V. E. Fioletov, S. M. Frith, J. D. Wild, J. P. Burrows, C. S. Long and D. Loyola, Total ozone trends from 1979 to 2016 derived from five merged observational datasets – the emergence into ozone recovery, Atmos. Chem. Phys., 2018, 18, 2097–2117. ArticleCAS Google Scholar
WMO, (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project, Report No. 55, Geneva, Switzerland, 2014.
J. Kuttippurath and P. J. Nair, The signs of Antarctic ozone hole recovery, Sci. Rep., 2017, 7, 585.
S. Solomon, D. J. Ivy, D. Kinnison, M. J. Mills, R. R. Neely and A. Schmidt, Emergence of healing in the Antarctic ozone layer, Science, 2016, 353, 269–274. ArticleCASPubMed Google Scholar
S. E. Strahan and A. R. Douglass, Decline in Antarctic ozone depletion and lower stratospheric chlorine determined from Aura Microwave Limb Sounder observations, Geophys. Res. Lett., 2018, 45, 382–390. ArticleCAS Google Scholar
D. J. Ivy, S. Solomon, D. Kinnison, M. J. Mills, A. Schmidt and R. R. Neely, The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model, Geophys. Res. Lett., 2017, 44, 2556–2561. ArticleCAS Google Scholar
K. A. Stone, S. Solomon, D. E. Kinnison, M. C. Pitts, L. R. Poole, M. J. Mills, A. Schmidt, R. R. Neely, D. Ivy, M. J. Schwartz, J.-P. Vernier, B. J. Johnson, M. B. Tully, A. R. Klekociuk, G. König-Langlo and S. Hagiya, Observing the impact of Calbuco volcanic aerosols on South Polar ozone depletion in 2015, J. Geophys. Res.: Atmos., 2017, 122, 11862–11879. ArticleCAS Google Scholar
E. R. Nash, S. E. Strahan, N. Kramarova, C. S. Long, M. C. Pitts, P. A. Newman, B. Johnson, M. L. Santee, I. Petropavlovskikh and G. O. Braathen, Antarctic ozone hole, in: State of the Climate in 2011, Bull. Am. Meteorol. Soc., 2015, 97, S168–S172.
S. Solomon, D. Ivy, M. Gupta, J. Bandoro, B. Santer, Q. Fu, P. Lin, R. R. Garcia, D. Kinnison and M. Mills, Mirrored changes in Antarctic ozoneand stratospheric temperature in the late 20th versus early 21st centuries, J. Geophys. Res.: Atmos., 2017, 122, 8940–8950. ArticleCAS Google Scholar
A. Pazmiño, S. Godin-Beekmann, A. Hauchecorne, C. Claud, S. Khaykin, F. Goutail, E. Wolfram, J. Salvador and E. Quel, Multiple symptoms of total ozone recovery inside the Antarctic vortex during austral spring, Atmos. Chem. Phys., 2018, 18, 7557–7572. ArticleCAS Google Scholar
M. P. Chipperfield, S. Bekki, S. Dhomse, N. R. P. Harris, B. Hassler, R. Hossaini, W. Steinbrecht, R. Thiéblemont and M. Weber, Detecting recovery of the stratospheric ozone layer, Nature, 2017, 549, 211–218. ArticleCASPubMed Google Scholar
S. S. Dhomse, D. Kinnison, M. P. Chipperfield, R. J. Salawitch, I. Cionni, M. I. Hegglin, N. L. Abraham, H. Akiyoshi, A. T. Archibald, E. M. Bednarz, S. Bekki, P. Braesicke, N. Butchart, M. Dameris, M. Deushi, S. Frith, S. C. Hardiman, B. Hassler, L. W. Horowitz, R. M. Hu, P. Jöckel, B. Josse, O. Kirner, S. Kremser, U. Langematz, J. Lewis, M. Marchand, M. Lin, E. Mancini, V. Marécal, M. Michou, O. Morgenstern, F. M. O’Connor, L. Oman, G. Pitari, D. A. Plummer, J. A. Pyle, L. E. Revell, E. Rozanov, R. Schofield, A. Stenke, K. Stone, K. Sudo, S. Tilmes, D. Visioni, Y. Yamashita and G. Zeng, Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmos. Chem. Phys., 2018, 18, 8409–8438. ArticleCAS Google Scholar
W. T. Ball, J. Alsing, D. J. Mortlock, J. Staehelin, J. D. Haigh, T. Peter, F. Tummon, R. Stübi, A. Stenke, J. Anderson, A. Bourassa, S. M. Davis, D. Degenstein, S. Frith, L. Froidevaux, C. Roth, V. Sofieva, R. Wang, J. Wild, P. Yu, J. R. Ziemke and E. V. Rozanov, Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery, Atmos. Chem. Phys., 2018, 18, 1379–1394. ArticleCAS Google Scholar
K. A. Stone, S. Solomon and D. E. Kinnison, On the identification of ozone recovery, Geophys. Res. Lett., 2018, 45, 5158–5165. ArticleCAS Google Scholar
M. P. Chipperfield, S. Dhomse, R. Hossaini, W. Feng, M. L. Santee, M. Weber, J. P. Burrows, J. D. Wild, D. Loyola and M. Coldewey-Egbers, On the cause of recent variations in lower stratospheric ozone, Geophys. Res. Lett., 2018, 45, 5718–5726. Article Google Scholar
K. Wargan, C. Orbe, S. Pawson, J. R. Ziemke, L. D. Oman, M. A. Olsen, L. Coy and K. E. Knowland, Recent decline in extratropical lower stratospheric ozone attributed to circulation changes, Geophys. Res. Lett., 2018, 45, 5166–5176. ArticleCASPubMedPubMed Central Google Scholar
A. H. Butler, J. S. Daniel, R. W. Portmann, A. R. Ravishankara, P. J. Young, D. W. Fahey and K. H. Rosenlof, Diverse policy implications for future ozone and surface UV in a changing climate, Environ. Res. Lett., 2016, 11, 064017. ArticleCAS Google Scholar
S. Meul, M. Dameris, U. Langematz, J. Abalichin, A. Kerschbaumer, A. Kubin and S. Oberländer-Hayn, Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure, Geophys. Res. Lett., 2016, 43, 2919–2927. ArticleCAS Google Scholar
A. F. Bais, R. L. McKenzie, G. Bernhard, P. J. Aucamp, M. Ilyas, S. Madronich and K. Tourpali, Ozone depletion and climate change: impacts on UV radiation, Photochem. Photobiol. Sci., 2015, 14(1), 19–52.
R. R. Garcia, D. E. Kinnison and D. R. Marsh, “World avoided” simulations with the Whole Atmosphere Community Climate Model, J. Geophys. Res., 2012, 117(D23), DOI: 10.1029/2012JD018430.
P. A. Newman and R. McKenzie, UV impacts avoided by the Montreal Protocol, Photochem. Photobiol. Sci., 2011, 10, 1152–1160. ArticleCASPubMed Google Scholar
M. P. Chipperfield, S. S. Dhomse, W. Feng, R. L. McKenzie, G. J. M. Velders and J. A. Pyle, Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol, Nat. Commun., 2015, 6, 7233. ArticleCASPubMed Google Scholar
R. M. Lucas, S. Yazar, A. R. Young, M. Norval, F. R. de Gruijl, Y. Takizawa, L. E. Rhodes and R. E. Neale, Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate, Photochem. Photobiol. Sci., 2019, 19, DOI: 10.1039/C8PP90060D.
J. F. Bornman, P. W. Barnes, T. M. Robson, S. A. Robinson, M. A. K. Jansen, C. L. Ballaré and S. D. Flint, Linkages between stratospheric ozone, UV radiation, and climate change and their implications for terrestrial ecosystems, Photochem. Photobiol. Sci., 2019, 19, DOI: 10.1039/C8PP90061B.
C. E. Williamson, P. J. Neale, S. Hylander, K. C. Rose, F. L. Figueroa, S. A. Robinson, D.-P. Häder, S.-Å. Wängberg and R. C. Worrest, The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems, Photochem. Photobiol. Sci., 2019, 19, DOI: 10.1039/C8PP90062K.
S. A. Montzka, G. S. Dutton, P. Yu, E. Ray, R. W. Portmann, J. S. Daniel, L. Kuijpers, B. D. Hall, D. Mondeel, C. Siso, J. D. Nance, M. Rigby, A. J. Manning, L. Hu, F. Moore, B. R. Miller and J. W. Elkins, An unexpected and persistent increase in global emissions of ozone-depleting CFC-11, Nature, 2018, 557, 413–417. ArticleCASPubMed Google Scholar
R. Hossaini, M. P. Chipperfield, S. A. Montzka, A. A. Leeson, S. S. Dhomse and J. A. Pyle, The increasing threat to stratospheric ozone from dichloromethane, Nat. Commun., 2017, 8, 15962. ArticleCASPubMedPubMed Central Google Scholar
L. Hu, S. A. Montzka, S. J. Lehman, D. S. Godwin, B. R. Miller, A. E. Andrews, K. Thoning, J. B. Miller, C. Sweeney, C. Siso, J. W. Elkins, B. D. Hall, D. J. Mondeel, D. Nance, T. Nehrkorn, M. Mountain, M. L. Fischer, S. C. Biraud, H. Chen and P. P. Tans, Considerable contribution of the Montreal Protocol to declining greenhouse gas emissions from the United States, Geophys. Res. Lett., 2017, 44, 8075–8083. ArticleCAS Google Scholar
G. J. M. Velders, D. W. Fahey, J. S. Daniel, S. O. Andersen and M. McFarland, Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions, Atmos. Environ., 2015, 123, 200–209. ArticleCAS Google Scholar
M. M. Hurwitz, E. L. Fleming, P. A. Newman, F. Li and Q. Liang, Early action on HFCs mitigates future atmospheric change, Environ. Res. Lett., 2016, 11, 114019.
Y. Xu, D. Zaelke, G. J. M. Velders and V. Ramanathan, The role of HFCs in mitigating 21st century climate change, Atmos. Chem. Phys., 2013, 13, 6083–6089. ArticleCAS Google Scholar
O. Morgenstern, P. Braesicke, M. M. Hurwitz, F. M. O’Connor, A. C. Bushell, C. E. Johnson and J. A. Pyle, The world avoided by the Montreal Protocol, Geophys. Res. Lett., 2008, 35, L16811.
P. A. Newman, L. D. Oman, A. R. Douglass, E. L. Fleming, S. M. Frith, M. M. Hurwitz, S. R. Kawa, C. H. Jackman, N. A. Krotkov, E. R. Nash, J. E. Nielsen, S. Pawson, R. S. Stolarski and G. J. M. Velders, What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?, Atmos. Chem. Phys., 2009, 9, 2113–2128. ArticleCAS Google Scholar
Y. Wu, L. M. Polvani and R. Seager, The importance of the Montreal Protocol in protecting Earth’s hydroclimate, J. Clim., 2013, 26, 4049–4068. Article Google Scholar
L. M. Polvani, S. J. Camargo and R. R. Garcia, The importance of the Montreal Protocol in mitigating the potential intensity of tropical cyclones, J. Clim., 2016, 29, 2275–2289. Article Google Scholar
W. D. Nordhaus, The economics of hurricanes and implications of global warming, Climate Change Econom., 2010, 01, 1–20. Article Google Scholar
N. Stern, Stern Review: The economics of climate change, HM Treasury, UK Report No, Cambridge University Press, 2006, http://www.cambridge.org/9780521700801.
V. Matthias, A. Dörnbrack and G. Stober, The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016, Geophys. Res. Lett., 2016, 43, 12287–12294. Article Google Scholar
G. H. Bernhard, V. E. Fioletov, J.-U. Grooß, I. Ialongo, B. Johnsen, K. Lakkala, G. L. Manneybron and R. Müller, Ozone and UV radiation, in State of the Climate in 2016, Bull. Am. Meteorol. Soc., 2017, S154–S156.
U. Langematz, S. Meul, K. Grunow, E. Romanowsky, S. Oberländer, J. Abalichin and A. Kubin, Future Arctic temperature and ozone: The role of stratospheric composition changes, J. Geophys. Res.: Atmos., 2014, 119, 2092–2112. ArticleCAS Google Scholar
E. M. Bednarz, A. C. Maycock, N. L. Abraham, P. Braesicke, O. Dessens and J. A. Pyle, Future Arctic ozone recovery: The importance of chemistry and dynamics, Atmos. Chem. Phys., 2016, 16, 12159–12176. ArticleCAS Google Scholar
N. Butchart, The Brewer-Dobson circulation, Rev. Geophys., 2014, 52, 157–184. Article Google Scholar
F. Iglesias-Suarez, P. J. Young and O. Wild, Stratospheric ozone change and related climate impacts over 1850–2100 as modelled by the ACCMIP ensemble, Atmos. Chem. Phys., 2016, 16, 343–363. ArticleCAS Google Scholar
IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Report No, Cambridge, United Kingdom and New York, NY, USA, 2013, p. 1355. http://www.ipcc.ch/.
J. Zhang, W. Tian, M. P. Chipperfield, F. Xie and J. Huang, Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades, Nat. Clim. Change, 2016, 6, 1094. Article Google Scholar
J. Zhang, W. Tian, F. Xie, M. P. Chipperfield, W. Feng, S.-W. Son, N. L. Abraham, A. T. Archibald, S. Bekki, N. Butchart, M. Deushi, S. Dhomse, Y. Han, P. Jöckel, D. Kinnison, O. Kirner, M. Michou, O. Morgenstern, F. M. O’Connor, G. Pitari, D. A. Plummer, L. E. Revell, E. Rozanov, D. Visioni, W. Wang and G. Zeng, Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Nat. Commun., 2018, 9, 206.
W. J. M. Seviour, Weakening and shift of the Arctic stratospheric polar vortex: Internal variability or forced response?, Geophys. Res. Lett., 2017, 44, 3365–3373. Article Google Scholar
P. A. Newman, L. Coy, S. Pawson and L. R. Lait, The anomalous change in the QBO in 2015–2016, Geophys. Res. Lett., 2016, 43, 8791–8797. Article Google Scholar
S. M. Osprey, N. Butchart, J. R. Knight, A. A. Scaife, K. Hamilton, J. A. Anstey, V. Schenzinger and C. Zhang, An unexpected disruption of theatmospheric quasi-biennial oscillation, Science, 2016, 353, 1424–1427. ArticleCASPubMed Google Scholar
O. V. Tweedy, N. A. Kramarova, S. E. Strahan, P. A. Newman, L. Coy, W. J. Randel, M. Park, D. W. Waugh and S. M. Frith, Response of trace gases to the disrupted 2015–2016 quasi-biennial oscillation, Atmos. Chem. Phys., 2017, 17, 6813–6823. ArticleCAS Google Scholar
W. Tian, Y. Li, F. Xie, J. Zhang, M. P. Chipperfield, W. Feng, Y. Hu, S. Zhao, X. Zhou, Y. Yang and X. Ma, The relationship between lower-stratospheric ozone at southern high latitudes and sea surface temperature in the East Asian marginal seas in austral spring, Atmos. Chem. Phys., 2017, 17, 6705–6722. ArticleCAS Google Scholar
J. Zhang, W. Tian, Z. Wang, F. Xie and F. Wang, The influence of ENSO on northern midlatitude ozone during the winter to spring transition, J. Clim., 2015, 28, 4774–4793. Article Google Scholar
WMO, (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2010, World Meteorological Organisation Report No. 52, Geneva, Switzerland, 2010, p. 438.
R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Björn, M. Ilyas and S. Madronich, Ozone depletion and climate change: Impacts on UV radiation, Photochem. Photobiol. Sci., 2011, 10, 182–198. ArticleCASPubMed Google Scholar
UNEP, Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2005, Photochem. Photobiol. Sci., 2006, 5, 13–24.
B. Sulzberger, A. T. Austin, R. M. Cory, R. G. Zepp and N. D. Paul, Solar UV radiation in a changing world: Roles of cryosphere-land-water-atmosphere interfaces in global biogeochemical cycles, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90063A.
S. R. Wilson, S. Madronich, J. D. Longstreth and K. R. Solomon, Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90064G.
A. L. Andrady, K. K. Pandey and A. M. Heikkilä, Interactive effects of solar UV radiation and climate change on material damage, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90065E.
A. Solomon, L. M. Polvani, K. L. Smith and R. P. Abernathey, The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1(WACCM), Geophys. Res. Lett., 2015, 42, 5547–5555. Article Google Scholar
W. J. M. Seviour, A. Gnanadesikan, D. Waugh and M.-A. Pradal, Transient response of the Southern Ocean to changing ozone: Regional responses and physical mechanisms, J. Clim., 2017, 30, 2463–2480. Article Google Scholar
S.-W. Son, B.-R. Han, C. Garfinkel, S.-Y. Kim, R. Park, N. L. Abraham, H. Akiyoshi, A. Archibald, N. Butchart, M. Chipperfield, M. Dameris, M. Deushi, S. S. Dhomse, S. Hardiman, P. Jöckel, D. Kinnison, M. Michou, O. Morgenstern, F. M. O’Connor, L. D. Oman, D. A. Plummer, A. Pozzer, L. E. Revell, E. Rozanov, A. Stenke, K. Stone, S. Tilmes, Y. Yamashita and G. Zeng, Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models, Environ. Res. Lett., 2018, 13, 054024.
W. J. M. Seviour, D. W. Waugh, L. M. Polvani, G. J. P. Correa and C. I. Garfinkel, Robustness of the simulated tropospheric response to ozone depletion, J. Clim., 2017, 30, 2577–2585. Article Google Scholar
J. Bandoro, S. Solomon, A. Donohoe, D. W. J. Thompson and B. D. Santer, Influences of the Antarctic ozone hole on southern hemispheric summer climate change, J. Clim., 2014, 27, 6245–6264. Article Google Scholar
K. Bai, N.-B. Chang and W. Gao, Quantification of relative contribution of Antarctic ozone depletion to increased austral extratropical precipitation during 1979–2013, J. Geophys. Res.: Atmos., 2016, 121, 1459–1474. ArticleCAS Google Scholar
S. Brönnimann, M. Jacques-Coper, E. Rozanov, M. F. Andreas, O. Morgenstern, G. Zeng, H. Akiyoshi and Y. Yamashita, Tropical circulation and precipitation response to ozone depletion and recovery, Environ. Res. Lett., 2017, 12, 064011. Article Google Scholar
B. Liebmann, C. S. Vera, L. M. V. Carvalho, I. A. Camilloni, M. P. Hoerling, D. Allured, V. R. Barros, J. Báez and M. Bidegain, An observed trend in Central South American precipitation, J. Clim., 2004, 17, 4357–4367.
Y. Wu and L. M. Polvani, Recent trends in extreme precipitation and temperature over Southeastern South America: The dominant role of stratospheric ozone depletion in the CESM Large Ensemble, J. Clim., 2017, 30, 6433–6441. Article Google Scholar
S. M. Kang, L. M. Polvani, J. C. Fyfe, S. W. Son, M. Sigmond and G. J. P. Correa, Modeling evidence that ozone depletion has impacted extreme precipitation in the austral summer, Geophys. Res. Lett., 2013, 40, 4054–4059. Article Google Scholar
P. L. M. Gonzalez, L. M. Polvani, R. Seager and G. J. P. Correa, Stratospheric ozone depletion: A key driver of recent precipitation trends in South Eastern South America, Clim. Dyn., 2014, 42 ,1775–1792.
H. Zhang, T. L. Delworth, F. Zeng, G. Vecchi, K. Paffendorf and L. Jia, Detection, attribution, and projection of regional rainfall changes on (multi-) decadal time scales: A Focus on Southeastern South America, J. Clim., 2016, 29, 8515–8534. Article Google Scholar
L. Tao, Y. Hu and J. Liu, Anthropogenic forcing on the Hadley circulation in CMIP5 simulations, Clim. Dyn., 2016, 46, 3337–3350. Article Google Scholar
D. J. Ivy, C. Hilgenbrink, D. Kinnison, R. A. Plumb, A. Sheshadri, S. Solomon and D. W. J. Thompson, Observed changes in the Southern hemispheric circulation in May, J. Clim., 2017, 30, 527–536. Article Google Scholar
L. L. Landrum, M. M. Holland, M. N. Raphael and L. M. Polvani, Stratospheric ozone depletion: An unlikely driver of the regional trends in Antarctic Sea Ice in Austral fall in the late twentieth century, Geophys. Res. Lett., 2017, 44 ,11062–11070.
D. Ferreira, J. Marshall, C. M. Bitz, S. Solomon and A. Plumb, Antarctic Ocean and sea ice response to ozone depletion: A two-time-scale problem, J. Clim., 2015, 28, 1206–1226. Article Google Scholar
W. J. M. Seviour, A. Gnanadesikan and D. W. Waugh, The transient response of the Southern Ocean to stratospheric ozone depletion, J_. Clim_., 2016, 29, 7383–7396.
M. M. Holland, L. Landrum, Y. Kostov and J. Marshall, Sensitivity of Antarctic sea ice to the Southern Annular Mode in coupled climate models, Clim. Dyn., 2017, 49, 1813–1831. Article Google Scholar
G. Chiodo, L. M. Polvani and M. Previdi, Large increase in incident shortwave radiation due to the ozone hole offset by high climatological albedo over Antarctica, J. Clim., 2017, 30, 4883–4890. Article Google Scholar
T. C. Grenfell, S. G. Warren and P. C. Mullen, Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths, J. Geophys. Res., 1994, 99, 18669–18684. Article Google Scholar
A. Y. Karpechko, L. Backman, L. Tholix, I. Ialongo, M. Andersson, V. Fioletov, A. Heikkila, B. Johnsen, T. Koskela, E. Kyrola, K. Lakkala, C. L. Myhre, M. Rex, V. F. Sofieva, J. Tamminen and I. Wohltmann, The link between springtime total ozone and summer UV radiation in Northern Hemisphere extratropics, J. Geophys. Res.: Atmos., 2013, 118, 8649–8661. ArticleCAS Google Scholar
G. L. Manney and Z. D. Lawrence, The major stratospheric final warming in 2016: Dispersal of vortex air and termination of Arctic chemical ozone loss, Atmos. Chem. Phys., 2016, 16, 15371–15396. ArticleCAS Google Scholar
D. J. Ivy, S. Solomon, N. Calvo and D. W. J. Thompson, Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate, Environ. Res. Lett., 2017, 12, 024004.
F. Xie, J. Li, W. Tian, Q. Fu, F.-F. Jin, Y. Hu, J. Zhang, W. Wang, C. Sun, J. Feng, Y. Yang and R. Ding, A connection from Arctic stratospheric ozone to El Niño-Southern oscillation, Environ. Res. Lett., 2016, 11, 124026.
E. A. Barnes and J. A. Screen, The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it?, Wiley Interdiscip. Rev. Clim. Change, 2015, 6, 277–286. Article Google Scholar
J. A. Francis and S. J. Vavrus, Evidence for a wavier jet stream in response to rapid Arctic warming, Environ. Res. Lett., 2015, 10, 014005. Article Google Scholar
R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Björn, M. Ilyas and S. Madronich, Ozone depletion and climate change: Impacts on UV radiation, Photochem. Photobiol. Sci., 2011, 10, 182–198. ArticleCASPubMed Google Scholar
D. Serrano, M. J. Marín, M. Núñez, M. P. Utrillas, S. Gandía and J. A. Martínez-Lozano, Wavelength dependence of the effective cloud optical depth, J. Atmos. Sol-Terr. Phys., 2015, 130–131, 14–22. Article Google Scholar
A. Kylling, A. Albold and G. Seckmeyer, Transmittance of a cloud is wavelength-dependent in the UV- range: Physical interpretation, Geophys. Res. Lett., 1997, 24, 397–400. ArticleCAS Google Scholar
A. Lindfors and A. Arola, On the wavelength-dependent attenuation of UV radiation by clouds, Geophys. Res. Lett., 2008, 35, L05806.
M. Antón, A. Cazorla, D. Mateos, M. J. Costa, F. J. Olmo and L. Alados-Arboledas, Sensitivity of UV erythemal radiation to total ozone changes under different sky conditions: Results for Granada, Spain, Photochem. Photobiol., 2016, 92, 215–219. ArticlePubMedCAS Google Scholar
R. McKenzie, B. Liley, M. Kotkamp and P. Disterhoft, Peak UV: Spectral contributions from cloud enhancements, AIP Conf. Proc., 2017, 1810, 110008. Article Google Scholar
J. Badosa, J. Calbó, R. McKenzie, B. Liley, J.-A. González, B. Forgan and C. N. Long, Two methods for retrieving UV Index for all cloud conditions from sky imager products or total sw radiation measurements, Photochem. Photobiol., 2014, 90, 941–951. CASPubMed Google Scholar
J. Calbó, J.-A. González, J. Badosa, R. McKenzie and B. Liley, How large and how long are UV and total radiation enhancements?, AIP Conf. Proc., 2017, 1810, 110002.
J. Crawford, R. E. Shetter, B. Lefer, C. Cantrell, W. Junkermann, S. Madronich and J. Calvert, Cloud impacts on UV spectral actinic flux observed during the International Photolysis Frequency Measurement and Model Intercomparison (IPMMI), J. Geophys. Res.: Atmos., 2003, 108, D002731.
G. Pfister, R. L. McKenzie, J. B. Liley, A. Thomas and M. J. Uddstrom, Cloud climatology for New Zealand and implications for radiation fields, in UV Radiation and its Effects Workshop, RSNZ, 2002.
R. D. García, V. E. Cachorro, E. Cuevas, C. Toledano, A. Redondas, M. Blumthaler and Y. Benounna, Comparison of measured and modelled spectral UV irradiance at Izaña high mountain station: Estimation of the underlying effective albedo, Int. J Climatol., 2016, 36, 377–388. Article Google Scholar
D. Mateos, G. Pace, D. Meloni, J. Bilbao, A. di Sarra, A. de Miguel, G. Casasanta and Q. Min, Observed influence of liquid cloud microphysical properties on ultraviolet surface radiation, J. Geophys. Res.: Atmos., 2014, 119, D020309.
M. O. Andreae, D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo and M. A. F. Silva-Dias, Smoking rain clouds over the Amazon, Science, 2004, 303, 1337–1342. ArticleCASPubMed Google Scholar
J. Mok, N. A. Krotkov, A. Arola, O. Torres, H. Jethva, M. Andrade, G. Labow, T. F. Eck, Z. Li, R. R. Dickerson, G. L. Stenchikov, S. Osipov and X. Ren, Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin, Sci. Rep., 2016, 6, 36940.
S. Kazadzis, P. Raptis, N. Kouremeti, V. Amiridis, A. Arola, E. Gerasopoulos and G. L. Schuster, Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment, Atmos. Meas. Tech., 2016, 9, 5997–6011. ArticleCAS Google Scholar
J. Li, B. E. Carlson, O. Dubovik and A. A. Lacis, Recent trends in aerosol optical properties derived from AERONET measurements, Atmos. Chem. Phys., 2014, 14, 12271–12289. ArticleCAS Google Scholar
J. P. Putaud, F. Cavalli, S. Martins dos Santos and A. Dell’Acqua, Long-term trends in aerosol optical characteristics in the Po Valley, Italy, Atmos. Chem. Phys., 2014, 14, 9129–9136. ArticleCAS Google Scholar
A. R. Attwood, R. A. Washenfelder, C. A. Brock, W. Hu, K. Baumann, P. Campuzano-Jost, D. A. Day, E. S. Edgerton, D. M. Murphy, B. B. Palm, A. McComiskey, N. L. Wagner, S. S. de Sá, A. Ortega, S. T. Martin, J. L. Jimenez and S. S. Brown, Trends in sulfate and organic aerosol mass in the Southeast U.S.: Impact on aerosol optical depth and radiative forcing, Geophys. Res. Lett., 2014, 41, 7701–7709. Article Google Scholar
D. Mateos, M. Antón, C. Toledano, V. E. Cachorro, L. Alados-Arboledas, M. Sorribas, M. J. Costa and J. M. Baldasano, Aerosol radiative effects in the ultraviolet, visible, and near-infrared spectral ranges using long-term aerosol data series over the Iberian Peninsula, Atmos. Chem. Phys., 2014, 14, 13497–13514. ArticleCAS Google Scholar
C. M. Gan, J. Pleim, R. Mathur, C. Hogrefe, C. N. Long, J. Xing, S. Roselle and C. Wei, Assessment of the effect of air pollution controls on trends in shortwave radiation over the United States from 1995 through 2010 from multiple observation networks, Atmos. Chem. Phys., 2014, 14, 1701–1715. ArticleCAS Google Scholar
R. Román, M. Antón, A. Valenzuela, J. E. Gil, H. Lyamani, A. De Miguel, F. J. Olmo, J. Bilbao and L. Alados-Arboledas, Evaluation of the desert dust effects on global, direct and diffuse spectral ultraviolet irradiance, Tellus B, 2013, 65, 19578.
H. Che, X. Y. Zhang, X. Xia, P. Goloub, B. Holben, H. Zhao, Y. Wang, X. C. Zhang, H. Wang, L. Blarel, B. Damiri, R. Zhang, X. Deng, Y. Ma, T. Wang, F. Geng, B. Qi, J. Zhu, J. Yu, Q. Chen and G. Shi, Ground-based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013, Atmos. Chem. Phys., 2015, 15, 7619–7652. ArticleCAS Google Scholar
J. Li, Y. Jiang, X. Xia and Y. Hu, Increase of surface solar irradiance across East China related to changes in aerosol properties during the past decade, Environ. Res. Lett., 2017, 13, 034006. ArticleCAS Google Scholar
S. Hantson, A. Arneth, S. P. Harrison, D. I. Kelley, I. C. Prentice, S. S. Rabin, S. Archibald, F. Mouillot, S. R. Arnold, P. Artaxo, D. Bachelet, P. Ciais, M. Forrest, P. Friedlingstein, T. Hickler, J. O. Kaplan, S. Kloster, W. Knorr, G. Lasslop, F. Li, S. Mangeon, J. R. Melton, A. Meyn, S. Sitch, A. Spessa, G. R. van der Werf, A. Voulgarakis and C. Yue, The status and challenge of global fire modelling, Biogeosciences, 2016, 13, 3359–3375. Article Google Scholar
M. D. Hurteau, A. L. Westerling, C. Wiedinmyer and B. P. Bryant, Projected effects of climate and development on California wildfire emissions through 2100, Environ. Sci. Technol., 2014, 48, 2298–2304. CASPubMed Google Scholar
M. D. Flannigan, M. A. Krawchuk, W. J. de Groot, B. M. Wotton and L. M. Gowman, Implications of changing climate for global wildland fire, Int. J. Wildland Fire, 2009, 18, 483–507. Article Google Scholar
J. T. Abatzoglou and A. P. Williams, Impact of anthropogenic climate change on wildfire across western US forests, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 11770–11775. ArticleCASPubMedPubMed Central Google Scholar
R. W. Bergstrom, P. B. Russell and P. Hignett, Wavelength dependence of the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo, J. Atmos. Sci., 2002, 59, 567–577. Article Google Scholar
C. E. Williamson, E. P. Overholt, J. A. Brentrup, R. M. Pilla, T. H. Leach, S. G. Schladow, J. D. Warren, S. S. Urmy, S. Sadro, S. Chandra and P. J. Neale, Sentinel responses to droughts, wildfires, and floods: effects of UV radiation on lakes and their ecosystem services, Front. Ecol. Environ., 2016, 14, 102–109. Article Google Scholar
D. V. Spracklen, L. J. Mickley, J. A. Logan, R. C. Hudman, R. Yevich, M. D. Flannigan and A. L. Westerling, Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States, J. Geophys. Res., 2009, 114, D010966.
X. Yue, L. J. Mickley, J. A. Logan and J. O. Kaplan, Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century, Atmos. Environ., 2013, 77, 767–780. ArticleCAS Google Scholar
J. C. Péré, B. Bessagnet, V. Pont, M. Mallet and F. Minvielle, Influence of the aerosol solar extinction on photochemistry during the 2010 Russian wildfires episode, Atmos. Chem. Phys., 2015, 15, 10983–10998. ArticleCAS Google Scholar
M. G. Tosca, J. T. Randerson and C. S. Zender, Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation, Atmos. Chem. Phys., 2013, 13, 5227–5241. ArticleCAS Google Scholar
L. Frey, F. A. M. Bender and G. Svensson, Cloud albedo changes in response to anthropogenic sulfate and nonsulfate aerosol forcings in CMIP5 models, Atmos. Chem. Phys., 2017, 17, 9145–9162. ArticleCAS Google Scholar
S. Szopa, Y. Balkanski, M. Schulz, S. Bekki, D. Cugnet, A. Fortems-Cheiney, S. Turquety, A. Cozic, C. Déandreis, D. Hauglustaine, A. Idelkadi, J. Lathière, F. Lefevre, M. Marchand, R. Vuolo, N. Yan and J.-L. Dufresne, Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100, Clim. Dyn., 2013, 40, 2223–2250. Article Google Scholar
J. López-Solano, A. Redondas, T. Carlund, J. J. Rodriguez-Franco, H. Diémoz, S. F. León-Luis, B. Hernández-Cruz, C. Guirado-Fuentes, N. Kouremeti, J. Gröbner, S. Kazadzis, V. Carreño, A. Berjón, D. Santana-Díaz, M. Rodríguez-Valido, V. De Bock, J. R. Moreta, J. Rimmer, A. R. D. Smedley, L. Boulkelia, N. Jepsen, P. Eriksen, A. F. Bais, V. Shirotov, J. M. Vilaplana, K. M. Wilson and T. Karppinen, Aerosol optical depth in the European Brewer Network, Atmos. Chem. Phys., 2018, 18, 3885–3902. ArticleCAS Google Scholar
T. Carlund, N. Kouremeti, S. Kazadzis and J. Gröbner, Aerosol optical depth determination in the UV using a four-channel precision filter radiometer, Atmos. Meas. Tech., 2017, 10, 905–923. Article Google Scholar
M. Zhang, W. Gong, Y. Ma, L. Wang and Z. Chen, Transmission and division of total optical depth method: A universal calibration method for Sun photometric measurements, Geophys. Res. Lett., 2016, 43, 2974–2980. Article Google Scholar
S. Kazadzis, N. Kouremeti, H. Diémoz, J. Gröbner, B. W. Forgan, M. Campanelli, V. Estellés, K. Lantz, J. Michalsky, T. Carlund, E. Cuevas, C. Toledano, R. Becker, S. Nyeki, P. G. Kosmopoulos, V. Tatsiankou, L. Vuilleumier, F. M. Denn, N. Ohkawara, O. Ijima, P. Goloub, P. I. Raptis, M. Milner, K. Behrens, A. Barreto, G. Martucci, E. Hall, J. Wendell, B. E. Fabbri and C. Wehrli, Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements, Atmos. Chem. Phys., 2018, 18, 3185–3201. ArticleCAS Google Scholar
G. Bernhard, Trends of solar ultraviolet irradiance at Barrow, Alaska, and the effect of measurement uncertainties on trend detection, Atmos. Chem. Phys., 2011, 11, 13029–13045. ArticleCAS Google Scholar
A. Damiani, R. R. Cordero, J. Carrasco, S. Watanabe, M. Kawamiya and V. E. Lagun, Changes in the UV Lambertian equivalent reflectivity in the Southern Ocean: Influence of sea ice and cloudiness, Rem. Sens. Environ., 2015, 169, 75–92. Article Google Scholar
T. Koenigk, A. Devasthale and K. G. Karlsson, Summer Arctic sea ice albedo in CMIP5 models, Atmos. Chem. Phys., 2014, 14, 1987–1998. ArticleCAS Google Scholar
P. Arsenovic, E. Rozanov, J. Anet, A. Stenke, W. Schmutz and T. Peter, Implications of potential future grand solar minimum for ozone layer and climate, Atmos. Chem. Phys., 2018, 18, 3469–3483. ArticleCAS Google Scholar
P. Arsenovic, E. Rozanov, A. Stenke, B. Funke, J. M. Wissing, K. Mursula, F. Tummon and T. Peter, The influence of Middle Range Energy Electrons on atmospheric chemistry and regional climate, J. Atmos. Sol-Terr. Phys., 2016, 149, 180–190. ArticleCAS Google Scholar
J. R. Norris, R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell and S. A. Klein, Evidence for climate change in the satellite cloud record, Nature, 2016, 536, 72–75. ArticleCASPubMed Google Scholar
S.-Y. Jun, C.-H. Ho, J.-H. Jeong, Y.-S. Choi and B.-M. Kim, Recent changes in winter Arctic clouds and their relationships with sea ice and atmospheric conditions, Tellus A, 2016, 68, 29130. Article Google Scholar
M. Abe, T. Nozawa, T. Ogura and K. Takata, Effect of retreating sea ice on Arctic cloud cover in simulated recent global warming, Atmos. Chem. Phys., 2016, 16, 14343–14356. ArticleCAS Google Scholar
D. Perovich, W. Meier, M. Tschudi, S. Farrell, S. Gerland, S. Hendricks, T. Krumpen and C. Haas, Sea ice cover [in State of the Climate in 2016], Bull. Am. Meteorol. Soc., 2017, 98, S131–S133.
J. C. Stroeve, T. Markus, L. Boisvert, J. Miller and A. Barrett, Changes in Arctic melt season and implications for sea ice loss, Geophys. Res. Lett., 2014, 41, 1216–1225. Article Google Scholar
C. Derksen, R. Brown, L. Mudryk and K. Luojus, Terrestrial snow cover [in State of the Climate in 2016], Bull. Am. Meteorol. Soc., 2017, 98, S151–S154.
J. R. Lee, B. Raymond, T. J. Bracegirdle, I. Chadès, R. A. Fuller, J. D. Shaw and A. Terauds, Climate change drives expansion of Antarctic ice-free habitat, Nature, 2017, 547, 49–54. ArticleCASPubMed Google Scholar
R. L. McKenzie, P. V. Johnston and G. Seckmeyer, UV spectro-radiometry in the network for the detection of stratospheric change (NDSC), in Solar Ultraviolet Radiation. Modelling, Measurements and Effects, ed. C. S. Zerefos and A. F. Bais, Springer-Verlag, Berlin, 1997, vol. 1.52, pp. 279–287.
M. De Mazière, A. M. Thompson, M. J. Kurylo, J. Wild, G. Bernhard, T. Blumenstock, J. Hannigan, J. C. Lambert, T. Leblanc, T. J. McGee, G. Nedoluha, I. Petropavlovskikh, G. Seckmeyer, P. C. Simon, W. Steinbrecht, S. Strahan and J. T. Sullivan, The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives, Atmos. Chem. Phys. Disc., 2017, 18, 4935–4964. ArticleCAS Google Scholar
R. R. Cordero, A. Damiani, J. Jorquera, E. Sepúlveda, M. Caballero, S. Fernandez, S. Feron, P. J. Llanillo, J. Carrasco, D. Laroze and F. Labbe, Ultraviolet radiation in the Atacama Desert, Antonie van Leeuwenhoek, 2018, 111, 1301–1313. ArticleCASPubMed Google Scholar
A. F. McKinlay and B. L. Diffey, A reference action spectrum for ultra-violet induced erythema in human skin, in Human Exposure to Ultraviolet Radiation: Risks and Regulations, ed. W. F. Passchier and B. F. M. Bosnajakovic, Elsevier, Amsterdam, 1987, pp. 83–87. Google Scholar
R. McKenzie, UV radiation in the melanoma capital of the world: What makes New Zealand so different?, AIP Conf. Proc., 2017, 1810, 020003. Article Google Scholar
G. Bernhard, C. Booth and J. Ehramjian, Climatology of ultraviolet radiation at high latitudes derived from measurements of the National Science Foundation’s Ultraviolet Spectral Irradiance Monitoring Network, in UV Radiation in Global Climate Change, ed. W. Gao, J. Slusser and D. Schmoldt, Springer, Berlin Heidelberg, 2010, pp. 48–72. Book Google Scholar
G. Seckmeyer, C. Mustert, M. Schrempf, R. L. McKenzie, J. B. Liley, M. Kotkamp, A. F. Bais, D. Gillotay, H. Slaper, A.-M. Siani, A. R. D. Smedley and A. Webb, Why is it so hard to gain enough Vitamin D by solar exposure in the European winter?, Metero. Zeits., 2018, 27, 223–233. Google Scholar
G. Bernhard, C. R. Booth and J. C. Ehramjian, Version 2 data of the National Science Foundation’s Ultraviolet Radiation Monitoring Network: South Pole, J. Geophys. Res.: Atmos., 2004, 109, D21207.
M. Beckmann, T. Václavík, A. M. Manceur, L. Šprtová, H. von Wehrden, E. Welk and A. F. Cord, glUV: A global UV-B radiation data set for macroecological studies, Methods Ecol. Evol., 2014, 5, 372–383. Article Google Scholar
S. Madronich and S. Flocke, Theoretical Estimation of Biologically Effective UV Radiation at the Earth’s Surface, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997, pp. 23–48.
K. Eleftheratos, S. Kazadzis, C. S. Zerefos, K. Tourpali, C. Meleti, D. Balis, I. Zyrichidou, K. Lakkala, U. Feister, T. Koskela, A. Heikkila and J. M. Karhu, Ozone and spectroradiometric UV changes in the past 20 years over high latitudes, Atmos.-Ocean, 2015, 53, 117–125. ArticleCAS Google Scholar
G. Bernhard, C. R. Booth, J. C. Ehramjian and S. E. Nichol, UV climatology at McMurdo station, Antarctica, based on version 2 data of the National Science Foundation’s Ultraviolet Spectral Irradiance Monitoring Network,J. Geophys. Res.: Atmos., 2006, 111, D11201.
I. Fountoulakis, A. F. Bais, K. Fragkos, C. Meleti, K. Tourpali and M. M. Zempila, Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: effects of changes in aerosols, total ozone and clouds, Atmos. Chem. Phys., 2016, 16 ,2493–2505. ArticleCAS Google Scholar
K. Fragkos, A. F. Bais, I. Fountoulakis, D. S. Balis, K. Tourpali, C. Meleti and P. Zanis, Extreme total column ozone events and effects on UV solar radiation at Thessaloniki, Greece, Theotet. Appl. Climatol., 2016, 126, 505–517. Article Google Scholar
A. Sanchez-Lorenzo, A. Enriquez-Alonso, M. Wild, J. Trentmann, S. M. Vicente-Serrano, A. Sanchez-Romero, R. Posselt and M. Z. Hakuba, Trends in downward surface solar radiation from satellites and ground observations over Europe during 1983–2010, Remote Sens. Environ., 2017, 189, 108–117. Article Google Scholar
R. J. Hooke, M. P. Higlett, N. Hunter and J. B. O’Hagan, Long term variations in erythema effective solar UV at Chilton, UK, from 1991 to 2015, Photochem. Photobiol. Sci., 2017, 16, 1596–1603. ArticleCASPubMed Google Scholar
V. De Bock, H. De Backer, R. Van Malderen, A. Mangold and A. Delcloo, Relations between erythemal UV dose, global solar radiation, total ozone column and aerosol optical depth at Uccle, Belgium, Atmos. Chem. Phys., 2014, 14, 12251–12270. ArticleCAS Google Scholar
A. Lindfors and L. Vuilleumier, Erythemal UV at Davos (Switzerland), 1926–2003, estimated using total ozone, sunshine duration, and snow depth, J. Geophys. Res.: Atmos., 2005, 110, D02104.
M. Posyniak, A. Szkop, A. Pietruczuk, J. Podgórski and J. Krzyścin, The long-term (1964–2014) variability of aerosol optical thickness and its impact on solar irradiance based on the data taken at Belsk, Poland, Acta Geophys., 2016, 64, 1858–1874. Article Google Scholar
K. Čížková, K. Láska, L. Metelka and M. Staněk, Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years, Atmos. Chem. Phys., 2018, 18, 1805–1818. ArticleCAS Google Scholar
R. Román, J. Bilbao and A. de Miguel, Erythemal ultraviolet irradiation trends in the Iberian Peninsula from 1950 to 2011, Atmos. Chem. Phys., 2015, 15, 375–391. ArticleCAS Google Scholar
J. W. Krzyścin and P. S. Sobolewski, Trends in erythemal doses at the Polish Polar Station, Hornsund, Svalbard based on the homogenized measurements (1996–2016) and reconstructed data (1983–1995), Atmos. Chem. Phys., 2018, 18, 1–11. ArticleCAS Google Scholar
H. Liu, B. Hu, L. Zhang, X. J. Zhao, K. Z. Shang, Y. S. Wang and J. Wang, Ultraviolet radiation over China: Spatial distribution and trends, Renewable Sustainable Energy Rev., 2017, 76, 1371–1383. Article Google Scholar
R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Björn and M. Ilyas, Changes in biologically-active ultraviolet radiation reaching the Earth’s surface, Photochem. Photobiol. Sci., 2007, **6(**3), 218–231.
I. Fountoulakis and A. F. Bais, Projected changes in erythemal and vitamin D effective irradiance over northern-hemisphere high latitudes, Photochem. Photobiol. Sci., 2015, 14 ,1251–1264. ArticleCAS Google Scholar
O. Morgenstern, M. I. Hegglin, E. Rozanov, F. M. O’Connor, N. L. Abraham, H. Akiyoshi, A. T. Archibald, S. Bekki, N. Butchart, M. P. Chipperfield, M. Deushi, S. S. Dhomse, R. R. Garcia, S. C. Hardiman, L. W. Horowitz, P. Jöckel, B. Josse, D. Kinnison, M. Lin, E. Mancini, M. E. Manyin, M. Marchand, V. Marécal, M. Michou, L. D. Oman, G. Pitari, D. A. Plummer, L. E. Revell, D. Saint-Martin, R. Schofield, A. Stenke, K. Stone, K. Sudo, T. Y. Tanaka, S. Tilmes, Y. Yamashita, K. Yoshida and G. Zeng, Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI), Geosci. Model Dev., 2017, 10, 639–671. Article Google Scholar
V. Eyring, I. Cionni, G. E. Bodeker, A. J. Charlton-Perez, D. E. Kinnison, J. F. Scinocca, D. W. Waugh, H. Akiyoshi, S. Bekki, M. P. Chipperfield, M. Dameris, S. Dhomse, S. M. Frith, H. Garny, A. Gettelman, A. Kubin, U. Langematz, E. Mancini, M. Marchand, T. Nakamura, L. D. Oman, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, T. G. Shepherd, K. Shibata, W. Tian, P. Braesicke, S. C. Hardiman, J. F. Lamarque, O. Morgenstern, J. A. Pyle, D. Smale and Y. Yamashita, Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 2010, 10, 9451–9472. ArticleCAS Google Scholar
T. Masui, K. Matsumoto, Y. Hijioka, T. Kinoshita, T. Nozawa, S. Ishiwatari, E. Kato, P. R. Shukla, Y. Yamagata and M. Kainuma, An emission pathway for stabilization at 6 Wm–2 radiative forcing, Clim. Change, 2011, 109, 59. ArticleCAS Google Scholar
K. E. Taylor, R. J. Stouffer and G. A. Meehl, An overview of CMIP5 and the experiment design, Bull. Am. Meteorol. Soc., 2012, 93, 485–498. Article Google Scholar
B. Mayer and A. Kylling, Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 2005, 5, 1855–1877. ArticleCAS Google Scholar
P. J. Crutzen, Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Clim. Change, 2006, 77, 211–220. ArticleCAS Google Scholar
M. I. Budyko, Climatic changes, American Geophysical Society, Washington DC, 1977. Book Google Scholar
M. Boettcher and S. Schäfer, Reflecting upon 10 years of geoengineering research: Introduction to the Crutzen + 10 special issue, Earth’s Future, 2017, 5, 266–277. Article Google Scholar
D. G. MacMartin, B. Kravitz, J. C. S. Long and P. J. Rasch, Geoengineering with stratospheric aerosols: What do we not know after a decade of research?, Earth’s Future, 2016, 4, 543–548. Article Google Scholar
D. W. Keith and P. J. Irvine, Solar geoengineering could substantially reduce climate risks—A research hypothesis for the next decade, Earth’s Future, 2016, 4, 549–559. Article Google Scholar
A. Robock, Albedo enhancement by stratospheric sulfur injections: More research needed, Earth’s Future, 2016, 4, 644–648. ArticleCAS Google Scholar
G. Pitari, V. Aquila, B. Kravitz, A. Robock, S. Watanabe, I. Cionni, N. D. Luca, G. D. Genova, E. Mancini and S. Tilmes, Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP), J. Geophys. Res.: Atmos., 2014, 119, 2629–2653. ArticleCAS Google Scholar
S. Tilmes, D. E. Kinnison, R. R. Garcia, R. Salawitch, T. Canty, J. Lee-Taylor, S. Madronich and K. Chance, Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere, Atmos. Chem. Phys., 2012, 12, 10945–10955. ArticleCAS Google Scholar
T. Li, E. Heuvelink, T. A. Dueck, J. Janse, G. Gort and L. F. M. Marcelis, Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors, Ann. Bot., 2014, 114, 145–156. ArticleCASPubMedPubMed Central Google Scholar
L. Xia, A. Robock, S. Tilmes and R. R. Neely Iii, Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate, Atmos. Chem. Phys., 2016, 16, 1479–1489. ArticleCAS Google Scholar
A. Redondas, V. Carreño, S. F. León-Luis, B. Hernández-Cruz, J. López-Solano, J. J. Rodriguez-Franco, J. M. Vilaplana, J. Gröbner, J. Rimmer, A. F. Bais, V. Savastiouk, J. R. Moreta, L. Boulkelia, N. Jepsen, K. M. Wilson, V. Shirotov and T. Karppinen, EUBREWNET RBCC-E Huelva 2015 Ozone Brewer Intercomparison, Atmos. Chem. Phys., 2018, 18, 9441–9455. ArticleCAS Google Scholar
P. Gies, R. Hooke, R. McKenzie, J. O’Hagan, S. Henderson, A. Pearson, M. Khazova, J. Javorniczky, K. King, M. Tully, M. Kotkamp, B. Forgan and S. Rhodes, International intercomparison of solar UVR Spectral Measurement Systems in Melbourne in 2013, Photochem. Photobiol., 2015, 91, 1237–1246. ArticleCASPubMed Google Scholar
G. Hülsen, J. Gröbner, S. Nevas, P. Sperfeld, L. Egli, G. Porrovecchio and M. Smid, Traceability of solar UV measurements using the Qasume reference spectroradiometer, Appl. Opt., 2016, 55, 7265–7275. ArticlePubMed Google Scholar
J. Gröbner, J. Schreder, S. Kazadzis, A. F. Bais, M. Blumthaler, P. Gorts, R. Tax, T. Koskela, G. Seckmeyer, A. R. Webb and D. Rembges, Traveling reference spectroradiometer for routine quality assurance of spectral solar ultraviolet irradiance measurements, Appl. Opt., 2005, 44, 5321–5331. ArticlePubMed Google Scholar
L. Egli, J. Gröbner, G. Hülsen, L. Bachmann, M. Blumthaler, J. Dubard, M. Khazova, R. Kift, K. Hoogendijk, A. Serrano, A. Smedley and J. M. Vilaplana, Quality assessment of solar UV irradiance measured with array spectroradiometers, Atmos. Meas. Tech., 2016, 9, 1553–1567. Article Google Scholar
S. Nevas, J. Gröbner, L. Egli and M. Blumthaler, Stray light correction of array spectroradiometers for solar UVmeasurements, Appl. Opt., 2014, 53, 4313–4319. ArticlePubMed Google Scholar
R. Zuber, P. Sperfeld, S. Riechelmann, S. Nevas, M. Sildoja and G. Seckmeyer, Adaption of an array spectroradiometer for total ozone column retrieval using direct solar irradiance measurements in the UV spectral range, Atmos. Meas. Tech., 2018, 2477–2484. Google Scholar
R. Zuber, M. Ribnitzky, M. Tobar, K. Lange, K. Dimitri, M. Schrempf, A. Niedzwiedz and G. Seckmeyer, Global spectral irradiance array spectroradiometer validation according to WMO, Meas. Sci. Technol., 2018, 29, 105801.
J. F. Bornman, P. W. Barnes, S. A. Robinson, C. L. Ballaré, S. D. Flint and M. M. Caldwell, Solar ultraviolet radiation and ozone depletion-driven climate change: Effects on terrestrial ecosystems, Photochem. Photobiol. Sci., 2015, 14, 88–107. ArticleCASPubMed Google Scholar
N. A. Cabrol, U. Feister, D.-P. Häder, H. Piazena, E. A. Grin and A. Klein, Record solar UV irradiance in the tropical Andes, Front. Environ. Sci., 2014, 2, 19.
R. L. McKenzie, B. Liley and S. Madronich, Critical appraisal of data used to infer record UVI in the tropical Andes, Photochem. Photobiol. Sci., 2017, 16, 785–794. ArticleCASPubMed Google Scholar
WMO, (World Meteorological Organization): Report of the 10th Meeting of the Ozone Research Managers of the Parties to the Vienna Convention for the Protection of the Ozone Layer, Global Ozone Research and Monitoring Project, Report No. 57, Geneva, Switzerland, 2017.
J. R. Herman, N. Krotkov, E. Celarier, D. Larko and G. Labow, Distribution of UV radiation at the Earth’s surface from TOMS-measured UV-backscattered radiances, J. Geophys. Res., 1999, 104, 12059–12076. ArticleCAS Google Scholar
A. Tanskanen, N. A. Krotkov, J. R. Herman and A. Arola, Surface ultraviolet irradiance from OMI, IEEE Trans. Geosci. Remote Sens., 2006, 44, 1267–1271. Article Google Scholar
A. Arola, S. Kazadzis, N. Krotkov, A. Bais, J. Gröbner and J. R. Herman, Assessment of TOMS UV bias due to absorbing aerosols, J. Geophys. Res., 2005, 110, D23211.
M.-M. Zempila, M.-E. Koukouli, A. Bais, I. Fountoulakis, A. Arola, N. Kouremeti and D. Balis, OMI/Aura UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece, Atmos. Environ., 2016, 140, 283–297. ArticleCAS Google Scholar
G. Bernhard, A. Arola, A. Dahlback, V. Fioletov, A. Heikkilä, B. Johnsen, T. Koskela, K. Lakkala, T. Svendby and J. Tamminen, Comparison of OMI UV observations with ground-based measurements at high northern latitudes, Atmos. Chem. Phys., 2015, 15, 7391–7412. ArticleCAS Google Scholar
C. Brogniez, F. Auriol, C. Deroo, A. Arola, J. Kujanpää, B. Sauvage, N. Kalakoski, M. R. A. Pitkänen, M. Catalfamo, J. M. Metzger, G. Tournois and P. Da Conceicao, Validation of satellite-based noontime UVI with NDACC ground-based instruments: influence of topography, environment and satellite overpass time, Atmos. Chem. Phys., 2016, 16, 15049–15074. ArticleCAS Google Scholar
J.-M. Cadet, H. Bencherif, T. Portafaix, K. Lamy, K. Ncongwane, G. Coetzee and C. Wright, Comparison of ground-based and satellite-derived solar UV Index levels at six South African sites, Int. J. Environ. Res. Public Health, 2017, 14, 1384. ArticlePubMed Central Google Scholar
L. Fan, W. Li, A. Dahlback, J. J. Stamnes, S. Stamnes and K. Stamnes, Long-term comparisons of UV index values derived from a NILU-UV instrument, NWS, and OMI in the New York area, Appl. Opt., 2015, 54, 1945–1951. ArticleCASPubMed Google Scholar
M. M. Zempila, J. H. G. M. van Geffen, M. Taylor, I. Fountoulakis, M. E. Koukouli, M. van Weele, R. J. van der A, A. Bais, C. Meleti and D. Balis, TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece, Atmos. Chem. Phys., 2017, 17, 7157–7174. ArticleCAS Google Scholar
J. Herman, L. Huang, R. McPeters, J. Ziemke, A. Cede and K. Blank, Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole earth as viewed by the DSCOVR spacecraft from the earth-sun Lagrange 1 orbit, Atmos. Meas. Tech., 2018, 11, 177–194. ArticleCAS Google Scholar
J. B. Liley and R. L. McKenzie, Where on Earth has the highest UV?, National Institute of Water and Atmospheric Research (NIWA) Report No. not provided, Lauder, Central Otago, New Zealand, 2006, vol. 2006, p. 2.
R. L. McKenzie, S. Madronich, G. Bernhard and F. Zaratti, Comment on “Record solar UV irradiance in the tropical Andes, by Cabrol et al.”, Front. Environ. Sci., 2015, 3, 00026.
R. R. Cordero, G. Seckmeyer, A. Damiani, S. Riechelmann, J. Rayas, F. Labbe and D. Laroze, The world’s highest levels of surface UV, Photochem. Photobiol. Sci., 2014, 13, 70–81. ArticleCASPubMed Google Scholar
A. Cede, E. Luccini, L. Nunez, R. D. Piacentini and M. Blumthaler, Monitoring of erythemal irradiance in the Argentine ultraviolet network, J. Geophys. Res.: Atmos., 2002, 107, D001206.
F. Zaratti, R. D. Piacentini, H. A. Guillen, S. H. Cabrera, J. Ben Liley and R. L. McKenzie, Proposal for a modification of the UVI risk scale, Photochem. Photobiol. Sci., 2014, 13, 980–985. ArticleCASPubMed Google Scholar
T. VoPham, J. E. Hart, K. A. Bertrand, Z. Sun, R. M. Tamimi and F. Laden, Spatiotemporal exposure modeling of ambient erythemal ultraviolet radiation, Environ. Health, 2016, 15, 111. ArticlePubMedPubMed Central Google Scholar
J. Kujanpää and N. Kalakoski, Operational surface UV radiation product from GOME-2 and AVHRR/3 data, Atmos. Meas. Tech., 2015, 8, 4399–4414. Article Google Scholar
J. Peltoniemi, M. Gritsevich, T Hakala, P. Dagsson-Waldhauserová, Ó. Arnalds, K. Anttila, H.-R. Hannula, N. Kivekäs, H. Lihavainen and O. Meinander, Soot on snow experiment: bidirectional reflectance factor measurements of contaminated snow, Cryosphere, 2015, 9, 2323–2337. Article Google Scholar
G. Seckmeyer, S. Riechelmann, M. Schrempf, A. Stuhrmann and A. Niedzwiedz, Solar simulators for a healthy vitamin D synthesis, Anticancer Res., 2015, 35, 3607–3607. Google Scholar
M. Schrempf, D. Haluza, S. Simic, S. Riechelmann, K. Graw and G. Seckmeyer, Is multidirectional UV exposure responsible for increasing melanoma prevalence with altitude? A hypothesis based on calculations with a 3D-human exposure model, Int. J. Environ. Res. Public Health, 2016, 13, 961. ArticlePubMed Central Google Scholar
A. Religi, C. Backes, L. Moccozet, L. Vuilleumier, D. Vernez and J.-L. Bulliard, Body anatomical UV protection predicted by shade structures: A modeling study, Photochem. Photobiol., 2018, 27, 1289–1296. ArticleCAS Google Scholar
M. Hess and P. Koepke, Modelling UV irradiances on arbitrarily oriented surfaces: Effects of sky obstructions, Atmos. Chem. Phys., 2008, 8, 3583.
R. Carrasco-Hernandez, A. R. D. Smedley and A. Webb, Fast calculations of the spectral diffuse-to-global ratios for approximating spectral irradiance at the street canyon level, Theotet. Appl. Climatol., 2015, 124, 1065–1077. Article Google Scholar
M. Schrempf, N. Thuns, K. Lange and G. Seckmeyer, Impact of orientation on the vitamin D weighted exposure of a human in an urban environment, Int. J. Environ. Res. Public Health, 2017, 14, 920. ArticlePubMed CentralCAS Google Scholar
P. Setlow and L. Li, Photochemistry and photobiology of the Spore Photoproduct: A 50-year journey, Photochem. Photobiol., 2015, 91, 1263–1290. ArticleCASPubMedPubMed Central Google Scholar
A. M. Siani, G. R. Casale, S. Modesti, A. V. Parisi and A. Colosimo, Investigation on the capability of polysulphone for measuring biologically effective solar UV exposures, Photochem. Photobiol. Sci., 2014, 13, 521–530. ArticleCASPubMed Google Scholar
G. R. Casale, M. Borra, A. Colosimo, M. Colucci, A. Militello, A. M. Siani and R. Sisto, Variability among polysulphone calibration curves, Phys. Med. Biol., 2006, 51, 4413–4427. ArticleCASPubMed Google Scholar
M.-A. Serrano, J. Canada, J. C. Moreno and G. Gurrea, Personal UV exposure for different outdoor sports, Photochem. Photobiol. Sci., 2014, 13, 671–679. ArticleCASPubMed Google Scholar
G. Seckmeyer, M. Klingebiel, S. Riechelmann, I. Lohse, R. L. McKenzie, J. Ben Liley, M. W. Allen, A.-M. Siani and G. R. Casale, A critical assessment of two types of personal UV dosimeters, Photochem. Photobiol., 2012, 88, 215–222. ArticleCASPubMed Google Scholar
R. K. R. Scragg, A. W. Stewart, R. L. McKenzie, A. I. Reeder, J. B. Liley and M. W. Allen, Sun exposure and 25-hydroxyvitamin D3 levels in a community sample: Quantifying the association with electronic dosimeters, J. Expos. Anal. Envion. Epid., 2017, 27, 471–477. ArticleCAS Google Scholar
A. Russell, M. Gohlan, A. Smedley and M. Densham, The ultraviolet radiation environment during an expedition across the Drake Passage and on the Antarctic Peninsula, Antarct. Sci., 2015, 27, 307–316. Article Google Scholar
M. Gröbner, J. Gröobner and G. Hulsen, Quantifying UV exposure, vitamin D status and their relationship in a group of high school students in an alpine environment, Photochem. Photobiol. Sci., 2015, 14, 352–357. ArticlePubMedCAS Google Scholar
U. Feister, G. Meyer, G. Laschewski and C. Boettcher, Validation of modeled daily erythemal exposure along tropical and subtropical shipping routes by ship-based and satellite-based measurements, J. Geophys. Res.: Atmos., 2015, 120 ,4117–4131. Article Google Scholar
G. R. Casale, A. M. Siani, H. Diémoz, G. Agnesod, A. V. Parisi and A. Colosimo, Extreme UV index and solar exposures at Plateau Rosà (3500 m a.s.l.) in Valle d’Aosta Region, Italy, Sci. Total Environ., 2015, 512–513, 622–630.
V. Nurse, C. Y. Wright, M. Allen and R. L. McKenzie, Solar ultraviolet radiation exposure of South African marathon runners during competition marathon runs and training sessions: A feasibility study, Photochem. Photobiol., 2015, 91 ,971–979.
A. W. Schmalwieser and A. M. Siani, Review on nonoccupational personal solar UV exposure measurements, Photochem. Photobiol., 2018, 94, 900–915. ArticleCASPubMed Google Scholar
C. D. Mobley and B. L. Diffey, The solar ultraviolet environment at the ocean, Photochem. Photobiol., 2018, 94, 611–617. ArticleCASPubMed Google Scholar
B. L. Diffey and C. D. Mobley, Sunburn at the seaside, Photodermatol., Photoimmunol. Photomed., 2018, 34, 298–301. Article Google Scholar
J. Guzikowski, A. E. Czerwińska, J. W. Krzyścin and M. A. Czerwiński, Controlling sunbathing safety during the summer holidays - The solar UV campaign at Baltic Sea coast in 2015, J. Photochem. Photobiol., B, 2017, 173, 271–281. ArticleCAS Google Scholar
J. Guzikowski, J. Krzyścin, A. Czerwińska and W. Raszewska, Adequate vitamin D3 skin synthesis versus erythema risk in the Northern Hemisphere midlatitudes, J. Photochem. Photobiol., B, 2018, 179, 54–65. ArticleCAS Google Scholar
W. A. Tellez, W. Nieto-Gutierrez and A. Taype-Rondan, Sunscreen mobile apps: A content analysis, Eu. Res. Telemed., 2017, 6, 157–163. Article Google Scholar
D. B. Buller, M. Berwick, K. Lantz, et al., Evaluation of immediate and 12-week effects of a smartphone sun-safety mobile application: A randomized clinical trial, JAMA Dermatol., 2015, 151, 505–512. ArticlePubMedPubMed Central Google Scholar
J. Burke and R. L. McKenzie, Story behind the two UVI Apps: uv2Day and GlobalUV, in NIWA UV Workshop, ed. R. L. McKenzie, Wellington, Zew Zealand, 2018, p. 2.
D. P. Igoe, A. Amar, A. V. Parisi and J. Turner, Characterisation of a smartphone image sensor response to direct solar 305 nm irradiation at high air masses, Sci. Total Environ., 2017, 587, 407–413. ArticlePubMedCAS Google Scholar
B. Mei, R. Li, W. Cheng, J. Yu and X. Cheng, Ultraviolet radiation measurement via smart devices, IEEE Internet of Things Journal, 2017, 4, 934–944. Article Google Scholar
A. McGonigle, T. Wilkes, T. Pering, J. Willmott, J. Cook, F. Mims and A. Parisi, Smartphone Spectrometers, Sensors, 2018, 18, 223. ArticleCASPubMed Central Google Scholar
R. Bouillon, J. Eisman, M. Garabedian, M. Holick, J. Kleinschmidt, T. Suda and K. Lucas, Action spectrum for the production of previtamin D3 in human skin, CIE Report No. 174:2006, Vienna, 2006. Google Scholar
CIE, Erythema reference action spectrum and standard erythema dose, Commission Internationale de l’Eclairage Report No. S 007/E-1998, Vienna, Austria, 1998, p. 4.
F. Snik, J. H. H. Rietjens, A. Apituley, H. Volten, B. Mijling, A. D. Noia, S. Heikamp, R. C. Heinsbroek, O. P. Hasekamp, J. M. Smit, J. Vonk, D. M. Stam, G. Harten, J. Boer and C. U. Keller, Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters, Geophys. Res. Lett., 2014, 41, 7351–7358. Article Google Scholar
H. Araki, J. Kim, S. Zhang, A. Banks, K. E. Crawford, X. Sheng, P. Gutruf, Y. Shi, R. M. Pielak and J. A. Rogers, Materials and device designs for an epidermal UV colorimetric dosimeter with near field communication capabilities, Adv. Funct. Mater., 2017, 27, 1604465.
Y. Shi, M. Manco, D. Moyal, G. Huppert, H. Araki, A. Banks, H. Joshi, R. McKenzie, A. Seewald, G. Griffin, E. Sen-Gupta, D. Wright, P. Bastien, F. Valceschini, S. Seité, J. A. Wright, R. Ghaffari, J. Rogers, G. Balooch and R. M. Pielak, Soft, stretchable, epidermal sensor with integrated electronics and photochemistry for measuring personal UV exposures, PLoS One, 2018, 13, e0190233.
B. Diffey and B. Cadars, An appraisal of the need for infrared radiation protection in sunscreens, Photochem. Photobiol. Sci., 2016, 15, 361–364. ArticleCASPubMed Google Scholar
B. Diffey and U. Osterwalder, Labelled sunscreen SPFs may overestimate protection in natural sunlight, Photochem. Photobiol. Sci., 2017, 16, 1519–1523. ArticleCASPubMed Google Scholar
M. Norval, L. O. Björn and F. R. D. Gruijl, Is the action spectrum for the UV-induced production of previtamin D3 in human skin correct?, Photochem. Photobiol. Sci., 2009, 9, 11–17. ArticlePubMed Google Scholar
A. van Dijk, P. den Outer, H. van Kranen and H. Slaper, The action spectrum for vitamin D3: initial skin reaction and prolonged exposure, Photochem. Photobiol. Sci., 2016, 15, 896–909. ArticlePubMedCAS Google Scholar
J. W. Krzyścin, J. Jarosiawski, B. Rajewska-Więch, P. S. Sobolewski, J. Narbutt, A. Lesiak and M. Pawlaczyk, Effectiveness of heliotherapy for psoriasis clearance in low and mid-latitudinal regions: A theoretical approach, J. Photochem. Photobiol., B, 2012, 115, 35–41. ArticleCAS Google Scholar
J. W. Krzyścin, J. Guzikowski, A. Czerwińska, A. Lesiak, J. Narbutt, J. Jaroslawski, P. S. Sobolewski, B. Rajewska-Więch and J. Wink, 24 hours forecast of the surface UV for the antipsoriatic heliotherapy in Poland, J. Photochem. Photobiol., B, 2015, 148, 136–144. ArticleCAS Google Scholar
X. Fang, A. R. Ravishankara, G. J. M. Velders, M. J. Molina, S. Su, J. Zhang, J. Hu and R. G. Prinn, Changes in emissions of ozone-depleting substances from China due to implementation of the Montreal Protocol, Environ. Sci. Technol., 2018, 52, 11359–11366. ArticleCASPubMed Google Scholar