Vitamin C and the common cold | British Journal of Nutrition | Cambridge Core (original) (raw)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of vitamin C on the common cold has been the subject of several studies. These studies do not support a considerable decrease in the incidence of the common cold with supplemental vitamin C. However, vitamin C has consistently decreased the duration of cold episodes and the severity of symptoms. The benefits that have been observed in different studies show a large variation and, therefore, the clinical significance may not be clearly inferred from them. The biochemical explanation for the benefits may be based on the antioxidant property of vitamin C. In an infection, phagocytic leucocytes become activated and they produce oxidizing compounds which are released from the cell. By reacting with these oxidants, vitamin C may decrease the inflammatory effects caused by them. Scurvy, which is caused by a deficiency in vitamin C, is mostly attributed to the decreased synthesis of collagen. However, vitamin C also participates in several other reactions, such as the destruction of oxidizing substances. The common cold studies indicate that the amounts of vitamin C which safely protect from scurvy may still be too low to provide an efficient rate for other reactions, possibly antioxidant in nature, in infected people.

References

Abramson, J. S. & Mills, E. L. (1988) Depression of neutrophil function by viruses and its role in secondary microbial infections. Reviews of Infectious Diseases 10, 326–341.CrossRefGoogle ScholarPubMed

Anderson, R. & Lukey, P. T. (1987) A biological role for ascorbate in the selective neutralization of extracellular phagocyte-derived oxidants. Annals of the New York Academy of Sciences 498, 229–247.CrossRefGoogle ScholarPubMed

Anderson, R., Oosthuizen, R., Maritz, R., Theron, A. & Rensburg, A. J. (1980) The effect of increasing weekly doses of ascorbate on certain cellular and humoral immune functions in normal volunteers. American Journal of Clinical Nutrition 33, 71–76.CrossRefGoogle ScholarPubMed

Anderson, R. & Theron, A. J. (1990)Physiological potential of ascorbate, β-carotene and α-tocopherol individually and in combination in the prevention of tissue damage, carcinogenesis and immune dysfunction mediated by phagocyte-derived reactive oxidants. World Review of Nutrition and Dietetics 62, 27–58.CrossRefGoogle ScholarPubMed

Anderson, T. W., Beaton, G. H., Corey, P. N. & Spero, L. (1975) Winter illness and vitamin C: the effect of relatively low doses. Canadian Medical Association Journal 112, 823–826.Google ScholarPubMed

Anderson, T. W., Reid, D. B. & Beaton, G. H. (1972) Vitamin C and the common cold: a double-blind trial. Canadian Medical Association Journal 107, 503–508.Google ScholarPubMed

Anderson, T. W., Reid, D. B. & Beaton, G. H. (1973) Vitamin C and the common cold. Canadian Medical Association Journal 108, 133.Google ScholarPubMed

Anderson, T. W., Suranyi, G. & Beaton, G. H. (1974) The effect on winter illness of large doses of vitamin C. Canadian Medical Association Journal 111, 31–36.Google ScholarPubMed

Asfora, J. (1977) Vitamin C in high doses in the treatment of the common cold. International Journal for Vitamin and Nutrition Research Suppl. 16, 219–234.Google Scholar

Baehner, R. L., Boxer, L. A., Allen, J. M. & Davis, J. (1977) Autooxidation as a basis for altered function by polymorphonuclear leukocytes. Blood 50, 327–335.CrossRefGoogle ScholarPubMed

Bancalari, A., Seguel, C., Neira, F., Ruiz, I. & Calvo, C. (1984) Valor profilactico de la vitamina C en infecciones respiratorias agudas del escolar (Prophylactic value of vitamin C in acute respiratory infections of schoolchildren). Revista Medica de Chile 112, 871–876.Google Scholar

Boxer, L. A., Vanderbilt, B., Bonsib, S., Jersild, R., Yang, H. H. & Baehner, R. L. (1979) Enhancement of chemotactic response and microtubule assembly in human leukocytes by ascorbic acid. Journal of Cellular Physiology 100, 119–126.CrossRefGoogle ScholarPubMed

Briggs, M. (1984) Vitamin C and infectious disease: a review of the literature and the results of a randomized, double-blind, prospective study over 8 years. In Recent Vitamin Research pp. 39–82, [Briggs, M. H., editor];. Boca Raton: CRC Press.Google Scholar

Bucca, C., Rolla, G., Arossa, W., Caria, E., Elia, C., Nebiolo, F. & Baldi, S. (1989) Effect of ascorbic acid on increased bronchial responsiveness during upper airway infection. Respiration 55, 214–219.CrossRefGoogle ScholarPubMed

Carr, A. B., Einstein, R., Lai, Y. C., Martin, N. G. & Starmer, G. A. (1981) Vitamin C and the common cold: A second MZ co-twin control study. Acta Geneticae Medicae et Gemellologiae 30, 249–255.CrossRefGoogle Scholar

Cathcart, R. F. (1981) Vitamin C, titrating to bowel tolerance, anascorbemia, and acute induced scurvy. Medical Hypotheses 7, 1359–1376.CrossRefGoogle ScholarPubMed

Chalmers, T. C. (1975) Effects of ascorbic acid on the common cold. An evaluation of the evidence. American Journal of Medicine 58, 532–536.CrossRefGoogle ScholarPubMed

Charleston, S. S. & Clegg, K. M. (1972) Ascorbic acid and the common cold. Lancet i, 1401–1402.CrossRefGoogle Scholar

Chatterjee, G. C., Majumder, P. K., Banerjee, S. K., Roy, R. K., Ray, B. & Rudrapal, D. (1975a) Relationships of protein and mineral intake to l-ascorbic acid metabolism, including considerations of some directly related hormones. Annals of the New York Academy of Sciences 258, 382–400.CrossRefGoogle ScholarPubMed

Chatterjee, I. B., Das Gupta, S., Majumder, A. K., Nandi, B. K. & Subramanian, N. (1975b) Effect of ascorbic acid on histamine metabolism in scorbutic guinea-pigs. Journal of Physiology 251, 271–279.CrossRefGoogle ScholarPubMed

Chatterjee, I. B., Majumder, A. K., Nandi, B. K. & Subramanian, N. (1975c) Synthesis and some major functions of vitamin C in animals. Annals of the New York Academy of Sciences 258, 24–47.CrossRefGoogle ScholarPubMed

Cheraskin, E., Ringsdorf, W. M. Jr, Michael, D. W. & Hicks, B. S. (1973) Daily vitamin C consumption and reported respiratory findings. International Journal for Vitamin and Nutrition Research 43, 42–55.Google ScholarPubMed

Chretien, J. H. & Garagusi, V. F. (1973) Correction of corticosteroid-induced defects of polymorphonuclear neutrophil function by ascorbic acid. Journal of the Reticuloendothelial Society 14, 280–286.Google ScholarPubMed

Clegg, K. M. & Macdonald, J. M. (1975) l-ascorbic acid and d-isoascorbic acid in a common cold survey. American Journal of Clinical Nutrition 28, 973–976.CrossRefGoogle Scholar

Cohen, M. V. (1989) Free radicals in ischemic and reperfusion myocardial injury: is this the time for clinical trials? Annals of Internal Medicine 111, 918–931.CrossRefGoogle ScholarPubMed

Conney, A. H., Bray, G. A., Evans, C. & Burns, J. J. (1961) Metabolic interactions between l-ascorbic acid and drugs. Annals of the New York Academy of Sciences 92, 115–127.CrossRefGoogle ScholarPubMed

Coulehan, J. L. (1979) Ascorbic acid and the common cold. Reviewing the evidence. Postgraduate Medicine 66 (3), 153–160.CrossRefGoogle Scholar

Coulehan, J. L., Eberhard, S., Kapner, L., Taylor, F., Rogers, K. & Garry, P. (1976) Vitamin C and acute illness in Navajo schoolchildren. New England Journal of Medicine 295, 973–977.CrossRefGoogle ScholarPubMed

Coulehan, J. L., Reisinger, K. S., Rogers, K. D. & Bradley, D. W. (1974) Vitamin C prophylaxis in a boarding school. New England Journal of Medicine 290, 6–10.CrossRefGoogle Scholar

Cowan, D. W., Diehl, H. S. & Baker, A. B. (1942) Vitamins for the prevention of colds. Journal of the American Medical Association 120, 1268–1271.CrossRefGoogle Scholar

Cross, C. E., Halliwell, B., Borish, E. T., Pryor, W. A., Ames, B. N., Saul, R. L., McCord, J. M. & Harman, D. (1987) Oxygen radicals and human disease. Annals of Internal Medicine 107, 526–545.CrossRefGoogle ScholarPubMed

Dalton, W. L. (1962) Massive doses of vitamin C in the treatment of viral diseases. Journal of the Indiana State Medical Association 55, 1151–1154.Google ScholarPubMed

Davies, J. E. W., Hughes, R. E., Jones, E., Reed, S. E., Craig, J. W. & Tyrrell, D. A. J. (1979) Metabolism of ascorbic acid (vitamin C) in subjects infected with common cold viruses. Biochemical Medicine 21, 78–85.CrossRefGoogle ScholarPubMed

Diliberto, E. J. Jr, Menniti, F. S., Knoth, J., Daniels, A. J., Kizer, J. S. & Viveros, O. H. (1987) Adrenomedullary chromaffin cells as a model to study the neurobiology of ascorbic acid: from monooxygenation to neuromodulation. Annals of the New York Academy of Sciences 498, 28–53.CrossRefGoogle Scholar

Drath, D. B. & Karnovsky, M. L. (1974) Bactericidal activity of metal-mediated peroxide-ascorbate systems. Infection and Immunity 10, 1077–1083.CrossRefGoogle ScholarPubMed

Dugal, L. P. (1961) Vitamin C in relation to cold temperature tolerance. Annals of the New York Academy of Sciences 92, 307–317.CrossRefGoogle ScholarPubMed

Dykes, M. H. M. & Meier, P. (1975) Ascorbic acid and the common cold. Evaluation of its efficacy and toxicity. Journal of the American Medical Association 231, 1073–1079.CrossRefGoogle ScholarPubMed

Eaton, S. B. & Konner, M. (1985) Paleolithic nutrition: a consideration of its nature and current implications. New England Journal of Medicine 312, 283–289.CrossRefGoogle ScholarPubMed

Elliott, B. (1973) Ascorbic acid; efficacy in the prevention of symptoms of respiratory infection on a Polaris submarine. International Research Communications System/Medical Science 1 (3), 12.Google Scholar

Elwood, P. C., Hughes, S. J. & Leger, A. S. (1977) A randomized controlled trial of the therapeutic effect of vitamin C in the common cold. Practitioner 218, 133–137.Google ScholarPubMed

Elwood, P. C., Lee, H. P., Leger, A. S., Baird, I. M. & Howard, A. N. (1976) A randomized controlled trial of vitamin C in the prevention and amelioration of the common cold. British Journal of Preventive and Social Medicine 30, 193–196.Google ScholarPubMed

Faden, H., Kaul, T. N. & Ogra, P. L. (1983) Activation of oxidative and arachidonic acid metabolism in neutrophils by respiratory syncytial virus antibody complexes: possible role in disease. Journal of Infectious Diseases 148, 110–116.CrossRefGoogle ScholarPubMed

Frei, B., England, L. & Ames, B. N. (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proceedings of the National Academy of Sciences, U.S.A. 86, 6377–6381.CrossRefGoogle ScholarPubMed

Frei, B., Stocker, R. & Ames, B. N. (1988) Antioxidant defenses and lipid peroxidation in human blood plasma. Proceedings of the National Academy of Sciences, U.S.A. 85, 9748–9752.CrossRefGoogle ScholarPubMed

Ganguly, R., Durieux, M.-F. & Waldman, R. H. (1976) Macrophage function in vitamin C-deficient guinea pigs. American Journal of Clinical Nutrition 29, 762–765.CrossRefGoogle ScholarPubMed

Ginter, E. (1989) Ascorbic acid in cholesterol metabolism and in the detoxification of xenobiotic substances: problem of optimum vitamin C intake. Nutrition 5, 369–374.Google ScholarPubMed

Glembotski, C. C. (1987) The role of ascorbic acid in the biosynthesis of the neuroendocrine peptides α-MSH and TRH. Annals of the New York Academy of Sciences 498, 54–61.CrossRefGoogle ScholarPubMed

Goetzl, E. J., Wasserman, S. I., Gigli, I. & Austen, K. F. (1974) Enhancement of random migration and chemotactic response of human leukocytes by ascorbic acid. Journal of Clinical Investigation 53, 813–818.CrossRefGoogle ScholarPubMed

Goldschmidt, M. C., Masin, W. J., Brown, L. R. & Wyde, P. R. (1988) The effect of ascorbic acid deficiency on leukocyte phagocytosis and killing of Actinomyces viscosus. International Journal for Vitamin and Nutrition Research 58, 326–334.Google ScholarPubMed

Halliwell, B. (1989) Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. British Journal of Experimental Pathology 70, 737–757.Google ScholarPubMed

Halliwell, B. & Gutteridge, J. M. C. (1990) The antioxidants of human extracellular fluids. Archives of Biochemistry and Biophysics 280, 1–8.CrossRefGoogle ScholarPubMed

Halliwell, B., Wasil, M. & Grootveld, M. (1987) Biologically significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. FEBS Letters 213, 15–18.CrossRefGoogle ScholarPubMed

Hartshorn, K. L. & Tauber, A. I. (1988) The influenza virus-infected phagocyte. Hematology/Oncology Clinics of North America 2, 301–315.CrossRefGoogle ScholarPubMed

Heffner, J. E. & Repine, J. E. (1989) Pulmonary strategies of antioxidant defense. American Review of Respiratory Diseases 140, 531–554.CrossRefGoogle ScholarPubMed

Hemilä, H. (1986) A re-evaluation of nutritional goals – not just deficiency counts. Medical Hypotheses 20, 17–27.CrossRefGoogle Scholar

Hemilä, H. (1991) Is there a biochemical basis for ‘nutrient need’? Trends in Food Science and Technology 2, 73.CrossRefGoogle Scholar

Hemilä, H., Roberts, P. & Wikström, M. (1984) Activated polymorphonuclear leucocytes consume vitamin C. FEBS Letters 178, 25–30.CrossRefGoogle ScholarPubMed

Hendley, J. O. (1983) Rhinovirus colds. Immunology and pathogenesis. European Journal of Respiratory Diseases. 64, Suppl.128, 340–343.Google Scholar

Hume, R. & Weyers, E. (1973) Changes in leucocyte ascorbic acid during the common cold. Scottish Medical Journal 18, 3–7.CrossRefGoogle ScholarPubMed

Hurst, J. K. & Barrette, W. C. Jr (1989) Leukocytic oxygen activation and microbicidal oxidative toxins. Critical Reviews in Biochemistry and Molecular Biology 24, 271–328.CrossRefGoogle ScholarPubMed

Jackson, J. H. & Cochrane, C. G. (1988) Leukocyte-induced tissue injury. Hematology/Oncology Clinics of North America 2, 317–334.CrossRefGoogle ScholarPubMed

Karlowski, T. R., Chalmers, T. C., Frenkel, L. D., Kapikian, A. Z., Lewis, T. L. & Lynch, J. M. (1975) Ascorbic acid for the common cold. A prophylactic and therapeutic trial. Journal of the American Medical Association 231, 1038–1042.CrossRefGoogle ScholarPubMed

Kettle, A. J. & Winterbourn, C. C. (1990) Superoxide enhances hypochlorous acid production by stimulated human neutrophils. Biochimica et Biophysica Acta 1052, 379–385.CrossRefGoogle ScholarPubMed

Kleijnen, J., Riet, G. & Knipschild, P. G. (1989) Vitamine C en verkoudheid; overzicht van een megadosis literatuur. (Vitamin C and the common cold; a review of the megadose literature.) Nederlands Tijdschrift voor Geneeskunde 133, 1532–1535.Google Scholar

Klenner, F. R. (1951) Massive doses of vitamin C and the virus diseases. Journal of Southern Medicine and Surgery 113, 101–107.Google ScholarPubMed

Klenner, F. R. (1971) Observations on the dose and administration of ascorbic acid when employed beyond the range of a vitamin in human pathology. Journal of Applied Nutrition 23, 61–88.Google Scholar

Lehrer, R. I., Ganz, T., Selsted, M. E., Babior, B. M. & Curnutte, J. T. (1988) Neutrophils and host defence. Annals of Internal Medicine 109, 127–142.CrossRefGoogle Scholar

Lemanske, R. F. Jr, Dick, E. C., Swenson, C. A., Vrtis, R. F. & Busse, W. W. (1989) Rhinovirus upper respiratory infection increases airway hyperreactivity and late asthmatic reactions. Journal of Clinical Investigation 83, 1–10.CrossRefGoogle ScholarPubMed

Levine, M. (1986) New concepts in the biology and biochemistry of ascorbic acid. New England Journal of Medicine 314, 892–902.Google ScholarPubMed

Luberoff, B. J. (1978) Symptomectomy with vitamin C. A chat with Robert Cathcart, MD. Chemtech 8, 76–86.Google Scholar

Ludvigsson, J., Hansson, L. O. & Tibbling, G. (1977) Vitamin C as a preventive medicine against common colds in children. Scandinavian Journal of Infectious Diseases 9, 91–98.CrossRefGoogle ScholarPubMed

Merchant, D. J. (1950) The effect of serum on the activity of the polymorphonuclear leukocytes of the guinea pig. Journal of Infectious Diseases 87, 275–284.CrossRefGoogle ScholarPubMed

Miller, J. Z., Nance, W. E., Norton, J. A., Wolen, R. L., Griffith, R. S. & Rose, R. J. (1977) Therapeutic effect of vitamin C. A co-twin control study. Journal of the American Medical Association 237, 248–251.CrossRefGoogle ScholarPubMed

Mills, C. A. (1949) Bone marrow nutrition in relation to phagocytic activity of blood granulocytes. Blood 4, 150–159.CrossRefGoogle ScholarPubMed

Mink, K. A., Dick, E. C., Jennings, L. C. & Inhorn, S. L. (1988) Amelioration of rhinovirus colds by vitamin C (ascorbic acid) supplementation. Medical Virology 7, 356.Google Scholar

Murphy, B. L., Krushak, D. H., Maynard, J. E. & Bradley, D. W. (1974) Ascorbic acid (vitamin C) and its effects on parainfluenza type III virus infection in cotton-topped marmosets. Laboratory Animal Science 24, 229–232.Google Scholar

Naclerio, R. M., Proud, D., Lichtenstein, L. M., Kagey-Sobotka, A., Hendley, J. O., Sorrentino, J. & Gwaltney, J. M. (1988) Kinins are generated during experimental rhinovirus colds. Journal of Infectious Diseases 157, 133–142.CrossRefGoogle ScholarPubMed

Nath, J. & Gallin, J. I. (1983) Studies in normal and chronic granulomatous disease neutrophils indicate a correlation of tubulin tyrosinolation with the cellular redox state. Journal of Clinical Investigation 71, 1273–1281.CrossRefGoogle ScholarPubMed

Nath, J. & Gallin, J. I. (1987) Effect of vitamin C on tubulin tyrosinolation in polymorphonuclear leukocytes. Annals of the New York Academy of Sciences 498, 216–228.CrossRefGoogle ScholarPubMed

National Research Council (1989) Recommended Dietary Allowances 10th ed. Washington, DC: National Academy Press.Google Scholar

Nowak, D., Ruta, U. & Piasecka, G. (1989) Ascorbic acid inhibits polymorphonuclear leukocytes influx to the place of inflammation possible protection of lung from phagocyte-mediated injury. Archivum Immunologiae et Therapiae Experimentalis 37, 213–218.Google Scholar

Nungester, W. J. & Ames, A. M. (1948) The relationship between ascorbic acid and phagocytic activity. Journal of Infectious Diseases 83, 50–54.CrossRefGoogle ScholarPubMed

Oda, T., Akaike, T., Hamamoto, T., Suzuki, F., Hirano, T. & Maeda, H. (1989) Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 244, 974–976.CrossRefGoogle ScholarPubMed

Pauling, L. (1970a) Vitamin C and the Common Cold (reprinted in 1976 as Vitamin C, Common Cold, and the Flu). San Francisco: Freeman.Google Scholar

Pauling, L. (1970b) Evolution and the need for ascorbic acid. Proceedings of the National Academy of Sciences, U.S.A. 67, 1643–1648.CrossRefGoogle ScholarPubMed

Pauling, L. (1971a) The significance of the evidence about ascorbic acid and the common cold. Proceedings of the National Academy of Sciences, U.S.A. 68, 2678–2681.CrossRefGoogle ScholarPubMed

Pauling, L. (1986) How to Live Longer and Feel Better. San Francisco: Freeman.Google Scholar

Pitt, H. A. & Costrini, A. M. (1979) Vitamin C prophylaxis in marine recruits. Journal of the American Medical Association 241, 908–911.CrossRefGoogle ScholarPubMed

Regnier, E. (1968) The administration of large doses of ascorbic acid in the prevention and treatment of the common cold.Part II. Review of Allergy 22, 948–956.Google Scholar

Ritzel, G. (1961) Kritische Beurteilung des Vitamins C als Prophylacticum und Therapeuticum der Erkältungskrankheiten. (Critical analysis of the role of vitamin C in the treatment of common cold.) Helvetica Medica Acta 28, 63–68.Google Scholar

Rivers, J. M. (1987) Safety of high-level vitamin C ingestion. Annals of the New York Academy of Sciences 498, 445–454.CrossRefGoogle ScholarPubMed

Sabiston, B. H. & Radomski, M. W. (1974) Health Problems and Vitamin C in Canadian Northern Military Operations. DCIEM Report no. 74-R-1012. Downsview, Ontario: Defence and Civil Institute of Environmental Medicine.Google Scholar

Samuni, A., Aronovitch, J., Godinger, D., Chevion, M. & Czapski, G. (1983) On the cytotoxicity of vitamin C and metal ions. European Journal of Biochemistry 137, 119–124.CrossRefGoogle ScholarPubMed

Schwartz, A. R., Togo, Y., Hornick, R. B., Tominaga, S. & Gleckman, R. A. (1973) Evaluation of the efficacy of ascorbic acid in prophylaxis of induced rhinovirus 44 infection in man. Journal of Infectious Diseases 128, 500–505.CrossRefGoogle ScholarPubMed

Shilotri, P. G. (1977) Glycolytic, hexose monophosphate shunt and bactericidal activities of leukocytes in ascorbic acid deficient guinea pigs. Journal of Nutrition 107, 1507–1512.CrossRefGoogle ScholarPubMed

Sperber, S. J. & Hayden, F. G. (1988) Chemotherapy of rhinovirus colds. Antimicrobial Agents and Chemotherapy 32, 409–419.CrossRefGoogle ScholarPubMed

Stankova, L., Gerhardt, N. B., Nagel, L. & Bigley, R. H. (1975) Ascorbate and phagocyte function. Infection and Immunity 12, 252–256.CrossRefGoogle ScholarPubMed

Stendahl, O., Coble, B.-I., Dahlgren, C., Hed, J. & Molin, L. (1984) Myeloperoxidase modulates the phagocytic acitivity of polymorphonuclear neutrophil leukocytes. Journal of Clinical Investigation 73, 366–373.CrossRefGoogle Scholar

Stone, I. (1972) The Healing Factor: Vitamin C Against Disease. New York: Grosset & Dunlap.Google Scholar

Subramanian, N. (1978) Histamine degradative potential of ascorbic acid: considerations and evaluations. Agents and Actions 8, 484–487.CrossRefGoogle ScholarPubMed

Tannenbaum, S. R. & Wishnok, J. S. (1987) Inhibition of nitrosamine formation by ascorbic acid. Annals of the New York Academy of Sciences 498, 354–363.CrossRefGoogle ScholarPubMed

Theron, A. & Anderson, R. (1985) Investigation of the protective effects of the antioxidants ascorbate, cysteine and dapsone on the phagocyte-mediated oxidative inactivation of human alpha-1-protease inhibitor in vitro. Americun Review qf Respiratory Diseases 132, 1049–1054.Google ScholarPubMed

Thomas, E. L., Learn, D. B., Jefferson, M. M. & Weatherred, W. (1988) Superoxide-dependent oxidation of extracellular reducing agents by isolated neutrophils. Journal of Biological Chemistry 263, 2178–2186.CrossRefGoogle ScholarPubMed

Thomas, W. R. & Holt, P. G. (1978) Vitamin C and immunity: an assessment of the evidence. Clinical and Experimental Immunology 32, 370–379.Google ScholarPubMed

Truswell, A. S. (1986) Ascorbic acid. New England Journal of Medicine 315, 709.Google Scholar

Tsan, M.-F. (1980) Phorbol myristrate acetate induced neutrophil autotoxicity. Journal of Cellular Physiology 105, 327–334.CrossRefGoogle Scholar

Turner, R. B. (1988) Rhinovirus infection of human embryonic lung fibroblasts induces the production of a chemoattractant for polymorphonuclear leukocytes. Journal of Infectious Diseases 157, 346–350.CrossRefGoogle ScholarPubMed

Turner, R. B., Hendley, J. O. & Gwaltney, J. M. Jr. (1982) Shedding of infected ciliated epithelial cells in rhinovirus colds. Journal of Infectious Diseases 145, 849–853.CrossRefGoogle ScholarPubMed

Tyrrell, D. A. J., Craig, J. W., Meade, T. W. & White, T. (1977) A trial of ascorbic acid in the treatment of the common cold. British Journal of Preventive and Social Medicine 31, 189–191.Google ScholarPubMed

Wang, Y. & Ness, B. V. (1989) Site-specific cleavage of supercoiled DNA by ascorbate/Cu(II). Nucleic Acids Research 17, 6915–6926.CrossRefGoogle ScholarPubMed

Ward, P. A. & Varani, J. (1990) Mechanisms of neutrophil-mediated killing of endothelial cells. Journal of Leukocyte Biology 48, 97–102.CrossRefGoogle ScholarPubMed

Washko, P., Rotrosen, D. & Levine, M. (1989) Ascorbic acid transport and accumulation in human neutrophils. Journal of Biological Chemistry 264, 18996–19002.CrossRefGoogle ScholarPubMed

Weiss, S. J. (1989) Tissue destruction by neutrophils. New England Journal of Medicine 320, 365–376.Google ScholarPubMed

Welliver, R. C., Wong, D. T., Sun, M., Middleton, E., Vaughan, R. S. & Ogra, P. L. (1981) The development of respiratory syncytial virus-specific IgE and the release of histamine in nasopharyngeal secretions after infection. New England Journal of Medicine 305, 841–846.CrossRefGoogle ScholarPubMed

Wilson, C. W. M. (1975) Ascorbic acid function and metabolism during colds. Annals of the New York Academy of Sciences 258, 529–539.CrossRefGoogle ScholarPubMed

Winterbourn, C. C. & Vissers, M. C. M. (1983) Changes in ascorbate levels on stimulation of human neutrophils. Biochimica et Biophysica Acta 763, 175–179.CrossRefGoogle ScholarPubMed

Winther, B., Brofeldt, S., Christensen, B. & Mygind, N. (1984a) Light and scanning electron microscopy of nasal biopsy material from patients with naturally acquired common colds. Acta Otolaryngologica 97, 309–318.CrossRefGoogle ScholarPubMed

Winther, B., Farr, B., Turner, R. B., Hendley, J. O., Gwaltney, J. M. Jr. & Mygind, N. (1984b) Histopathologic examination and enumeration of polymorphonuclear leukocytes in the nasal mucosa during experimental rhinovirus colds. Acta Otolaryngologica Suppl.413, 19–24.CrossRefGoogle ScholarPubMed

Winther, B., Gwaltney, J. M. & Hendley, J. O. (1990) Respiratory virus infection of monolayer cultures of human nasal epithelial cells. American Review of Respiratory Diseases 141, 839–845.CrossRefGoogle ScholarPubMed