A Detailed Linkage Map of Medaka, Oryzias latipes: Comparative Genomics and Genome Evolution (original) (raw)

Journal Article

,

Department of Biological Sciences

, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Corresponding author: Kiyoshi Naruse, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku 7-3-1, Tokyo 113-0033, Japan. E-mail: naruse@biol.s.u-tokyo.ac.jp

Search for other works by this author on:

,

Department of Biological Sciences

, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Search for other works by this author on:

,

Department of Biological Sciences

, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Department of Integrated Biosciences

, Graduate School of Frontier Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Search for other works by this author on:

,

Department of Biological Sciences

, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Search for other works by this author on:

,

Department of Biological Sciences

, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Search for other works by this author on:

,

Department of Biological Sciences

, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Search for other works by this author on:

,

Department of Biological Sciences

, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Search for other works by this author on:

,

Department of Biological Sciences

, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Search for other works by this author on:

,

Department of Biological Sciences

, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Search for other works by this author on:

,

Department of Biological Sciences

, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Search for other works by this author on:

... Show more

Accepted:

29 November 1999

Cite

Kiyoshi Naruse, Shoji Fukamachi, Hiroshi Mitani, Mariko Kondo, Tomoko Matsuoka, Shu Kondo, Nana Hanamura, Yutaka Morita, Kazuhito Hasegawa, Reiko Nishigaki, Atsuko Shimada, Hironori Wada, Takehiro Kusakabe, Norio Suzuki, Masato Kinoshita, Akira Kanamori, Tokio Terado, Hiroshi Kimura, Masaru Nonaka, Akihiro Shima, A Detailed Linkage Map of Medaka, Oryzias latipes: Comparative Genomics and Genome Evolution, Genetics, Volume 154, Issue 4, 1 April 2000, Pages 1773–1784, https://doi.org/10.1093/genetics/154.4.1773
Close

Navbar Search Filter Mobile Enter search term Search

Abstract

We mapped 633 markers (488 AFLPs, 28 RAPDs, 34 IRSs, 75 ESTs, 4 STSs, and 4 phenotypic markers) for the Medaka Oryzias latipes, a teleost fish of the order Beloniformes. Linkage was determined using a reference typing DNA panel from 39 cell lines derived from backcross progeny. This panel provided unlimited DNA for the accumulation of mapping data. The total map length of Medaka was 1354.5 cM and 24 linkage groups were detected, corresponding to the haploid chromosome number of the organism. Thirteen to 49 markers for each linkage group were obtained. Conserved synteny between Medaka and zebrafish was observed for 2 independent linkage groups. Unlike zebrafish, however, the Medaka linkage map showed obvious restriction of recombination on the linkage group containing the male-determining region (Y) locus compared to the autosomal chromosomes.

GENETIC linkage maps using markers, such as phenotypic traits and expressed sequence tagged sites (ESTs), and anonymous DNA markers, such as random amplification of polymorphic DNA markers (RAPDs), amplified fragment length polymorphic markers (AFLPs), and microsatellites, are very effective tools for analyzing complex biological phenomena. Genetic maps with hundreds and thousands of mapped loci have been reported for various organisms (Postlethwait et al. 1994, 1998; Wxada et al. 1995; Dib et al.1997; Dietrich et al. 1997; Knapik et al. 1998; Young et al. 1998). These maps have been used for various kinds of biological analyses, such as position-based cloning (Dietrich et al. 1997), quantitative trait locus analysis (Lander and Botstein 1989), comparative vertebrate genomics (Amores et al. 1998; Postlethwait et al. 1998), and detection of radiation-induced DNA mutations (Shimada and Shima 1997).

Medaka is a small freshwater fish native to Japan, Korea, and China (Yamamoto 1975; Naruse et al. 1994). This fish has been used widely as an experimental animal because of its relatively short life cycle, high fecundity, transparent egg chorion, small size, and availability of several inbred lines (Naruse et al. 1994). Medaka, zebrafish, Xiphophorus fish, and rainbow trout are members of the orders Beloniformes, Cypriniformes, Cyprinodontiformes, and Salmoniformes, respectively, distributed in relatively different taxonomic positions in teleost phylogeny (Nelson 1994; Naruse 1996). Comparative genomics of these fish together with progression in the mammalian genome project should facilitate studies of the evolution of genome structure and function in vertebrates.

A Medaka linkage map was first described by Aida (1921). He demonstrated that the male-determining factor (Y) was linked with the gene that controls carotinoid deposition in xanthophores (R). Since Aida's study, over 60 visible mutants have been isolated and analyzed for linkage (Tomita 1975, 1982), and a multipoint linkage map including 170 loci and 28 linkage groups has been established using RAPD fingerprints and allozyme analysis (Wada et al. 1995). As the Medaka haploid chromosome number is 24, this map has 4 excess linkage groups, indicating that at least four gaps remain to be filled in the map. The purpose of this study is to fill these gaps and to map expressed genes to compare the arrangement of orthologous genes among different species.

MATERIALS AND METHODS

Strains and genetic crosses: The AA2 (Shimada and Shima 1997) and HNI (Hyodo-Taguchi and Sakaizumi 1993)

TABLE 1

Nomenclature of loci by combination of selective primers for AFLP analysis

MseI selective primer EcoRI selective primer
M-CAA M-CAC M-CAG M-CAT M-CTA M-CTC M-CTG M-CTT
E-AAC EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8
E-AAG EM9 EM10 EM11 EM12 EM13 EM14 EM15 EM16
E-ACA EM17 EM18 EM19 EM20 EM21 EM22 EM23 EM24
E-ACT EM25 EM26 EM27 EM28 EM29 EM30 EM31 EM32
E-ACC EM33 EM34 EM35 EM36 EM37 EM38 EM39 EM40
E-ACG EM41 EM42 EM43 EM44 EM45 EM46 EM47 EM48
E-AGC EM49 EM50 EM51 EM52 EM53 EM54 EM55 EM56
E-AGG EM57 EM58 EM59 EM60 EM61 EM62 EM63 EM64
MseI selective primer EcoRI selective primer
M-CAA M-CAC M-CAG M-CAT M-CTA M-CTC M-CTG M-CTT
E-AAC EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8
E-AAG EM9 EM10 EM11 EM12 EM13 EM14 EM15 EM16
E-ACA EM17 EM18 EM19 EM20 EM21 EM22 EM23 EM24
E-ACT EM25 EM26 EM27 EM28 EM29 EM30 EM31 EM32
E-ACC EM33 EM34 EM35 EM36 EM37 EM38 EM39 EM40
E-ACG EM41 EM42 EM43 EM44 EM45 EM46 EM47 EM48
E-AGC EM49 EM50 EM51 EM52 EM53 EM54 EM55 EM56
E-AGG EM57 EM58 EM59 EM60 EM61 EM62 EM63 EM64

E and M indicate the sequences GACTGCGTACCAATTC and GATGAGTCCTGAGTAA, respectively.

TABLE 1

Nomenclature of loci by combination of selective primers for AFLP analysis

MseI selective primer EcoRI selective primer
M-CAA M-CAC M-CAG M-CAT M-CTA M-CTC M-CTG M-CTT
E-AAC EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8
E-AAG EM9 EM10 EM11 EM12 EM13 EM14 EM15 EM16
E-ACA EM17 EM18 EM19 EM20 EM21 EM22 EM23 EM24
E-ACT EM25 EM26 EM27 EM28 EM29 EM30 EM31 EM32
E-ACC EM33 EM34 EM35 EM36 EM37 EM38 EM39 EM40
E-ACG EM41 EM42 EM43 EM44 EM45 EM46 EM47 EM48
E-AGC EM49 EM50 EM51 EM52 EM53 EM54 EM55 EM56
E-AGG EM57 EM58 EM59 EM60 EM61 EM62 EM63 EM64
MseI selective primer EcoRI selective primer
M-CAA M-CAC M-CAG M-CAT M-CTA M-CTC M-CTG M-CTT
E-AAC EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8
E-AAG EM9 EM10 EM11 EM12 EM13 EM14 EM15 EM16
E-ACA EM17 EM18 EM19 EM20 EM21 EM22 EM23 EM24
E-ACT EM25 EM26 EM27 EM28 EM29 EM30 EM31 EM32
E-ACC EM33 EM34 EM35 EM36 EM37 EM38 EM39 EM40
E-ACG EM41 EM42 EM43 EM44 EM45 EM46 EM47 EM48
E-AGC EM49 EM50 EM51 EM52 EM53 EM54 EM55 EM56
E-AGG EM57 EM58 EM59 EM60 EM61 EM62 EM63 EM64

E and M indicate the sequences GACTGCGTACCAATTC and GATGAGTCCTGAGTAA, respectively.

strains are inbred strains established from Southern and Northern Medaka populations, respectively (Sakaizumi 1986). In the phenotypic trait loci, the genotypes of AA2 strain are b/b, lf/lf, and gu/gu and those of HNI strain are wild types. These two populations are genetically divergent and polymorphisms between them are identified easily (Naruse et al. 1994; Matsuda et al. 1997a,b). The sequence average divergence between AA2 and HNI strains was ~0.8% in the coding regions and 2.6% in the intron regions. The insertions or deletions of nucleotides were also observed in the intron regions. By crossing AA2 female and (AA2 female × HNI male) F1 male, 39 backcross progeny were obtained for genotyping.

Establishment of cell lines for a reference mapping panel: A caudal fin was taken from each of the backcross progeny to establish the cell lines. The fins were sterilized with Dakin's solution, washed twice with PBS, and put into L-15 medium supplemented with 20% FBS at 33° (Komura et al. 1988). The remainder of each body was fixed in 100% ethanol.

Genomic DNA extraction: Genomic DNA was extracted from the cultured backcross cell lines and the ethanol fixed bodies by proteinase K digestion followed by phenol-chloroform extraction and isopropanol precipitation.

Markers: A total of 634 markers, including AFLPs, RAPDs, ESTs, internal repeat sequences (IRSs), sequence tagged sites (STSs), and 4 phenotypic markers, were used to establish the genetic linkage map.

Phenotypic markers: Four phenotypic markers, Y (male-determining gene), b (colorless melanophore), lf (leucophore free), and gu (guanineless), were used. Recessive mutant phenotypes for the b, gu, or lf loci have been described by Tomita (1982) and Wada et al. (1998). At 2–3 months of age, the adult fish were sexed based on gonadal morphology and sexual dimorphism of the dorsal and anal fin sharp.

AFLP marker: AFLP marker analysis (Vos et al. 1995) was performed using the AFLP analysis kit (GIBCO-BRL, Gaithersburg, MD) following the manufacturer's instructions. The AFLP markers were named using the enzymes and selective primer sets used and the product size. For example, EM8-1 was the largest AFLP band obtained using EcoRI and MseI and E-ACC and M-CTT selective primers. The AFLP markers identified after the initial survey of AFLPs were given an additional alphabetical identifier, such as EM8-d. The nomenclature for each locus using the combination of selective primers is shown in Table 1.

EST and STS markers: To assign the loci encoding expressed genes to each linkage group, we used polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Primers were designed on the basis of cDNA sequences previously described by others or sequences determined by us. PCR amplification of the genomic counterpart of the cDNA was carried out using LA-Taq DNA polymerase (Takara, Kyoto, Japan), using genomic DNA from the AA2, HNI, and F1 strains as template. Amplifications were carried out in a PCR thermal cycler MP (Takara model TP-3000) as follows: denaturation at 95° for 5 min, followed by 30 amplification cycles of 98° for 20 sec, 55° for 40 sec, and 72° for 2 min, and a final extension of 72° for 5 min. When multiple bands were observed after amplification, the annealing temperature was increased to 60° or 65°. The amplified fragments were sequenced and analyzed for restriction sites, insertions/deletions, and allele-specific polymorphism. The fragments amplified from the genomic DNA of each backcross progeny were digested with the appropriate restriction enzymes, separated on a 12% slab polyacrylamide gel (Davis 1964) or 3% agarose gel, and stained with ethidium bromide. Table 2 lists the genes mapped in the present study. Most EST and STS markers except the Hox genes were genotyped on a 12% slab polyacrylamide gel. All Hox genes except Hoxa9a were genotyped on a 3% agarose gel. The mappings of the Hoxa4a and Hoxa5a genes and the Hoxc4a and Hoxc5a genes were done using the polymorphism on the intergenic regions between two genes. Thus, the same primer sequences were listed in Table 2. The UAA and UBA genes and Ki-ras gene and NK-1 marker could be amplified with the same primers. Therefore, the same sequences were listed in Table 2. For the amplification of the Bf/C2 gene, the nested PCR using two sets of primers was used. The same PCR conditions were used for the genotyping of the STS markers.

RAPD and IRS markers: PCR amplification of RAPD markers was essentially the same as previously described (Kubota et al. 1995; Wada et al. 1995). Primers to amplify the intersequence between two short interspersed repetitive elements (Naruse et al. 1992; Shimoda et al. 1996; Uchiyama et al. 1996) were used for IRS fingerprinting (McCarthy et al. 1995). Primer sequences for RAPD and IRS fingerprinting are shown in Table 3. The locus designated IRS-AB is a marker obtained by PCR using the IRS-A and B primers. PCR amplification incorporating [32P]dCTP for IRS fingerprinting was carried out using LA-Taq DNA polymerase (Takara, Kyoto, Japan) and the same conditions were used for EST and STS amplification. The PCR products were electrophoresed in a 5% urea long-range sequencing gel (FMC Bioproducts, Rockland, ME) and were visualized by autoradiography.

Linkage analysis: Segregation of the markers was analyzed using a reference mapping panel and MAPMAKER Macintosh version 2 (Lander et al. 1987; formatted for Macintosh by Dr. Tingy, Dupont Corp., Wilmington, DE). A minimum LOD

TABLE 2

List of EST and STS markers mapped by PCR-RFLP

No. Gene LG Primer forward Primer reverse Polymorphism DDBJ/GenBank accession no.
1 Act-c 8 AGCCGAGAGGGAAATTGTCCGT CAACTGCAGATGCCTGGGGTG MspI D89627
2 Act-m 3 CTGCTGAGCGTGAGATCGTG GTTTTCACAGCCTCTGTCTCCG FokI D87740
3 B2m 23 ATGAAAGAGCTTTTCTTCATTGC CTGGCCAGGGTCATGACTGTACAC in/del AB006593
4 Bf/C2 14 GCTCAACATCTACATTCGCCT TGACAACTTCATACACATCA RsaI D84063
CCTCTTTGGAAACAGAC TTCACAGCTCAGCAGGT
5 Blue 5 TCCTGTGTGTCGAAGGCCTCCACA GACTTTTGAGACTTCAGTGGTTGA in/del AB001602
6 C3-1 1 GCAGAGATGCTTTGAAT ATTTTATTCTGCACACATCTTTTACCA HinfI AB025575
7 C3-2 1 GCAGAGATGCTTTGAAT TTTCCACTGGGCCTTGGTAAAAT HphI AB025576
8 C4 16 TGTGCAGAAAGACCCTGCTATAAGG TGGTGTTATGGCGGAGGCAAG in/del AB025577
9 Casp3A 10 TGATATACGGCACTGATGGTCCGG GGTGCTCCTCCACGAGTAATAGCC N1aIII AB032609
10 Casp3B 1 CAGATTAAACAGCTTTTGACTGATGGT TGACTCAAAAGGATGCAGACGA in/del AB032608
11 DAB 18 GTCTGGAGAGAAAATCTCCTG TCTGACTCTGGCATGGACGGGT in/del AB033212
12 dd001 22 CCATCAACACCAGCAGTAATCA GGACAGGTTGTGTTTTTGAAATTTGC EcoRI AB033201
13 dd004 7 CAGTCACAGCAAGGCTCTCC GTCCAAAGTGCACGACTTCC in/del AB032765
14 dd007 6 CTCCCCTCTTAAGGCAAAGATG CAGTTTATCCCGTCTCAACTG MnlI AB033202
15 dd009 22 CCACAGACCCAAGACTGGGC CAGCTGATGAATGGTAATGC MspI AB033203
16 dd024 7 GTTCCTGTCAGCAGCGTATTT AGCCATAAAGAAGAACAACCCA FokI AB033204
17 dd039 15 TGGGAGTGGTGTAGGACTTCTT TGTTAAACGAAGGGGCTTGTTAG in/del AB033205
18 dd048 1 ACGGTTCTTCTCCTGTGGTCTA AACAATACAAACTGAGACCCTGC Allele specific AB033206
19 Ef-IA 11 AATGTGGAGTCCTATCAG AGGACACGTGTTACTCCCAC in/del AB020734
20 Eya3 11 CCAACTGTTTGATTTACGTGTTCACGCA AAGCCATCAGCCAGGAAGTTGTAGTT Allele specific AB032898
21 Fgfr2 15 AAGGACAAACCCAAGGAGGCTGCT TTGTTCGTCTGAGACACGAGCAATG in/del D13551
22 Fgfr3 22 TAAGGAGAAGCCCAATAAGCCACTG CTGCTCATCTGGAATTTTGCAGGTG AvaII D13552
23 Fgfr4 14 CAAGGACGGCCCGGAGCAGGCCACC CTGTTCCTCTGGCACTTTGGTCACA HinfI D13553
24 Green 5 CTTCTTTTCAAAGAGCTCAGCCC ACAGGCTATCATAGTCGAGGCTG in/del AB001603
25 Hoxa10a 11 CCTCTTCAACATGTACCTGACCCGAG TTGGACCCCACAGTGGAAATGAGTCATATT Allele specific AB026974
26 Hoxala 11 CCATTTCAACAAGTACCTGACTCGGGCT GCACACGATTGACCCGTAAACGTCTC Psp1406 I AB026948
27 Hoxa3a 11 GTACGCCATGCCAACGTCATATCCAC AAGGTGGGAGCCTTGAGGAGGCGCA Allele specific AB026951
28 Hoxa4a 11 CCACTTTAACCGGTATCTGACCCGCA CAAGAGTGTAAAATACTGAAGATCGGTCCATC Allele specific AB026954
29 Hoxa5a 11 CCACTTTAACCGGTATCTGACCCGCA CAAGAGTGTAAAATACTGAAGATCGGTCCATC Allele specific AB026961
30 Hoxa9a 11 GCATCACCAAGAGAGAAGGACGAGCTG CACTCGCGTGGAGCCAGTTGGAAAC HinP1 I AB026972
31 Hoxa9b 16 CTTTTGTGAATATCCCGTGCGAGTCCTC TGGTGGGCTTCGCTTGCAGCCAAC Allele specific AB026971
32 Hoxb1b 19 CCACTTCAACAAGTACCTGACCCGC GTGCAAACAATGACACCAACTCAAATCACAGC HaeIII AB026947
33 Hoxb4a 8 TCACTACAACAGATACCTGACGCGCAGGC ACGGACGTGAGAAGGAATCGCTTCGATCC MspI AB026956
34 Hoxb5a 8 CCACTTCAATCGCTACCTGACCAGGA CAATGGCATGCTGAAAAGTGCTGCGC Allele specific AB026959
35 Hoxb5b 19 CCTTGGATGCGGAAACTGCACATAAGC AGCGTCTGGTAGCGGGTGTACGCAG DdeI AB026962
36 Hoxb6b 19 CCACTTCAATCGCTACCTGACCAGGA CAATGGCATGCTGAAAAGTGCTGCGC Allele specific AB026964
37 Hoxb9a 8 GAGTAAGGAGGGATGTGAAGGCAGC CGCGCGTGCAGCCAGTTGGCTGAAG XbaI AB026969
38 Hoxc10a 7 CTTGTTCAACATGTATCTGTCTCGGGAGC ACAACGATAGTGCCGCACTGTGCAG HinP1 I AB026973
39 Hoxc3a 7 CCACTTCAGCCCTTACCTTTGTCGAC CAACAATGATATGAAAAACCTGCTGGATG DraI AB026953
40 Hoxc4a 7 TCACTTCAACCGGTACCTGAGCCGC CTTAAAGGAAACCGCACAAGATAGCTACG Allele specific AB026955
41 Hoxc5a 7 TCACTTCAACCGGTACCTGAGCCGC CTTAAAGGAAACCGCACAAGATAGCTACG Allele specific AB026960
42 Hoxc9a 7 TCCAGAGTCGGAGCTGCTGACTTCG CGTCGAACGAGCATGTATCCAATTTGCC HindIII AB026970
43 Hoxd3a 21 CTGACGCATTTGTAATATATGGTTCCG GAAAAGAGCGCAACATAATTTTGGCAC in/del AB026952
44 Hoxd4b 15 CCACTTCAGCCGCTACCTCACGCG CTCTTACAGTGAGAGTTACAGCTTTCCC BbvI AB026957
45 Hoxd9a 21 GCAGCGCAGAGCAAGCGAGATTTCG GAGCGCGCGTGGATCCAGTTTGCAG MboII AB026967
46 Hoxd9b 15 CCTCTACAACATGTACTTGACCCGG CCGGCTTTGAAACATGCAGGAGGACGAG N1aIII AB026968
47 Hsc70 14 ATGCCAGAGGGAATGCCAGGAG TTCAGCATTTATTGTAGAGTGACATC DraI D13669
48 Ki-ras 6 ATGACGGAATATAAGCTGGTGGTG GAGGAAGCCCTCCGCTGTCCT in/del AF030545
49 LMP2 11 GGCTCTGATTCCAGAGTGTCTGCA CAGAGTGGCAGCTGAGCGAACCT BglII D89724
50 LMP7 11 CTGTAYGRCTGAGAAACAA TCCTTGTCCCATCCACAGAT PvuII D89725
51 mfOR2 ATGTTGATACTGTCCTGGCTTTGG AATAATCTCAGTGGTTGGTGTCCTT TaqI AB022647
52 mfOR3 14 CTGAAATGACCCCACCCTTGCA TGCAGAGGAAACATGATAGC in/del AB022648
53 mfOR4 14 TCAGAGGCATCCAAGTATCCAG GTACTCAGGGAAACGATGTAGC MnlI AB022649
54 Msx10 15 AGACCAAGTGCGAGTCACCGAACG GATGGAGAGGTACTGTTTCTGACG In/del AB033287
55 Msx4 14 ACCGAAGGAAGACTTGATGGCAGT GCATGGACAGGTACTGCTTCTGCC MnlI AB028880
56 Olgcl 12 GGCCGAGCCGTGACTTTATTTGTTCTAG GAGGGTGCTTTGCTCCACAGTTACACAA in/del AB004921
57 Olgc2 16 CAGCAGAGGGTCGTAAGAGG CGTCTTTATTTATTCACTCCTTCAG in/del AB016082
58 Olgc3 2 CTCTTGCTGATTTCTGAAC TCAGCGTCACTTCGTAAC HinfI AB000899
59 Olgc4 13 CAACGGTGCTAATGTAATGAAAGT CTCAGACATATTGGGGGAAAGTAA FokI AB000900
60 Olgc5 14 CTCAGCAGTGCCACAATAAACAATGACTCC GAACATAAATCGCTGGAGACTGACATGGGA in/del AB000901
61 Pax6 3 CCCTGTAACCACCCACTCCACCATC AACACCGGGCACTTTACAGAAGGTCCA in/del AB002408
62 Phr 17 GAYAAYTTYTGCTTCTACAAC CATGGANGCCYCAGATNGACCACAT in/del D26022
63 Red 5 TGGAGTGCAGTCCTACATGATTG CTGTCTTTGATGTAGAAACTTCAG N1aIII AB001604
64 Rhodopsin 7 AAACACCACCGAGGGGCTGATAG ATCCAGGTGAAGACCAAACCCAT EheI AB001606
65 Shh 20 ACCACTTCGAGGAGTCCCTTCAC TGTTCCCTCTCCCTTCTTGATGA RsaI AB007129
66 Six3 19 ACCCCGACTCAAGTAGGGAACTG CCAGCATGATATGGGATAGATCCAG N1aIII AJ000937
67 Tap 2 11 AAATTCTTCTGGACGGGAATCCA TCACCACAAGAGTCTGGTTTGGG in/del AB033382
68 Tp53 18 AGGTGTCCCCACCACCAAAC AGTGAGGATGGTGAGGATGGG in/del U57306
69 Trpl 18 ATGCCTTCCTTAATGATGTGTTG ACCCGCACGGGTCGTCAACG MnlI AF072305
70 Tyr 13 TACTACGTGTCCAGAGACACCTTC AGTGGACCTTCTGCAGTAGCGTTAC DraI AB010101
71 UAA 11 TCCATCAGTGTCTCTCCTCCAGAAG GCAGACACAGAGAGAATGACAGCG in/del AB026977
72 UBA 11 TCCATCAGTGTCTCTCCTCCAGAAG GCAGACACAGAGAGAATGACAGCG in/del AB026978
73 UCA 22 TATTTTTGTTGCTGTCATTG AGCCTAAATCACAAAAGGGGTTT Allele specific AB033381
74 Violet 23 GAACTTTGTCGTTCTTCTGGCGA ACTTCCTTCTCAGCCTTCTGCGT BssSI AB001605
75 Yc-1 1 GAGGTAATAGTTGGCAAAGGAGC TACTGAGCTCAACCAGAGGACA Sau3A1 AB033606
76 Yc-2 1 AAGCTGCGCACCTTCTATGAGAAGC ACTTGCGCTTGCGCTCACCAGT RsaI AB033607
77 NK-1 8 ATGACGGAATATAAGCTGGTGGTG GAGGAAGCCCTCCGCTGTCCT in/del a
78 FS-1 19 GAATTCAAGCCAAAGATG TTAACTGAAACAAAATGAAGG Allele specific AB033330
79 OPH3-1 12 ACTCTGTCAGTCTGGATCTG ATGCTGATAACATGAGGTGC Allele specific AB033329
80 Can3 7 GAAACTAGTGCTGACAAGCAAGGC GAGCTGTGGAAGTCCCTCCATTT in/del AB033286
No. Gene LG Primer forward Primer reverse Polymorphism DDBJ/GenBank accession no.
1 Act-c 8 AGCCGAGAGGGAAATTGTCCGT CAACTGCAGATGCCTGGGGTG MspI D89627
2 Act-m 3 CTGCTGAGCGTGAGATCGTG GTTTTCACAGCCTCTGTCTCCG FokI D87740
3 B2m 23 ATGAAAGAGCTTTTCTTCATTGC CTGGCCAGGGTCATGACTGTACAC in/del AB006593
4 Bf/C2 14 GCTCAACATCTACATTCGCCT TGACAACTTCATACACATCA RsaI D84063
CCTCTTTGGAAACAGAC TTCACAGCTCAGCAGGT
5 Blue 5 TCCTGTGTGTCGAAGGCCTCCACA GACTTTTGAGACTTCAGTGGTTGA in/del AB001602
6 C3-1 1 GCAGAGATGCTTTGAAT ATTTTATTCTGCACACATCTTTTACCA HinfI AB025575
7 C3-2 1 GCAGAGATGCTTTGAAT TTTCCACTGGGCCTTGGTAAAAT HphI AB025576
8 C4 16 TGTGCAGAAAGACCCTGCTATAAGG TGGTGTTATGGCGGAGGCAAG in/del AB025577
9 Casp3A 10 TGATATACGGCACTGATGGTCCGG GGTGCTCCTCCACGAGTAATAGCC N1aIII AB032609
10 Casp3B 1 CAGATTAAACAGCTTTTGACTGATGGT TGACTCAAAAGGATGCAGACGA in/del AB032608
11 DAB 18 GTCTGGAGAGAAAATCTCCTG TCTGACTCTGGCATGGACGGGT in/del AB033212
12 dd001 22 CCATCAACACCAGCAGTAATCA GGACAGGTTGTGTTTTTGAAATTTGC EcoRI AB033201
13 dd004 7 CAGTCACAGCAAGGCTCTCC GTCCAAAGTGCACGACTTCC in/del AB032765
14 dd007 6 CTCCCCTCTTAAGGCAAAGATG CAGTTTATCCCGTCTCAACTG MnlI AB033202
15 dd009 22 CCACAGACCCAAGACTGGGC CAGCTGATGAATGGTAATGC MspI AB033203
16 dd024 7 GTTCCTGTCAGCAGCGTATTT AGCCATAAAGAAGAACAACCCA FokI AB033204
17 dd039 15 TGGGAGTGGTGTAGGACTTCTT TGTTAAACGAAGGGGCTTGTTAG in/del AB033205
18 dd048 1 ACGGTTCTTCTCCTGTGGTCTA AACAATACAAACTGAGACCCTGC Allele specific AB033206
19 Ef-IA 11 AATGTGGAGTCCTATCAG AGGACACGTGTTACTCCCAC in/del AB020734
20 Eya3 11 CCAACTGTTTGATTTACGTGTTCACGCA AAGCCATCAGCCAGGAAGTTGTAGTT Allele specific AB032898
21 Fgfr2 15 AAGGACAAACCCAAGGAGGCTGCT TTGTTCGTCTGAGACACGAGCAATG in/del D13551
22 Fgfr3 22 TAAGGAGAAGCCCAATAAGCCACTG CTGCTCATCTGGAATTTTGCAGGTG AvaII D13552
23 Fgfr4 14 CAAGGACGGCCCGGAGCAGGCCACC CTGTTCCTCTGGCACTTTGGTCACA HinfI D13553
24 Green 5 CTTCTTTTCAAAGAGCTCAGCCC ACAGGCTATCATAGTCGAGGCTG in/del AB001603
25 Hoxa10a 11 CCTCTTCAACATGTACCTGACCCGAG TTGGACCCCACAGTGGAAATGAGTCATATT Allele specific AB026974
26 Hoxala 11 CCATTTCAACAAGTACCTGACTCGGGCT GCACACGATTGACCCGTAAACGTCTC Psp1406 I AB026948
27 Hoxa3a 11 GTACGCCATGCCAACGTCATATCCAC AAGGTGGGAGCCTTGAGGAGGCGCA Allele specific AB026951
28 Hoxa4a 11 CCACTTTAACCGGTATCTGACCCGCA CAAGAGTGTAAAATACTGAAGATCGGTCCATC Allele specific AB026954
29 Hoxa5a 11 CCACTTTAACCGGTATCTGACCCGCA CAAGAGTGTAAAATACTGAAGATCGGTCCATC Allele specific AB026961
30 Hoxa9a 11 GCATCACCAAGAGAGAAGGACGAGCTG CACTCGCGTGGAGCCAGTTGGAAAC HinP1 I AB026972
31 Hoxa9b 16 CTTTTGTGAATATCCCGTGCGAGTCCTC TGGTGGGCTTCGCTTGCAGCCAAC Allele specific AB026971
32 Hoxb1b 19 CCACTTCAACAAGTACCTGACCCGC GTGCAAACAATGACACCAACTCAAATCACAGC HaeIII AB026947
33 Hoxb4a 8 TCACTACAACAGATACCTGACGCGCAGGC ACGGACGTGAGAAGGAATCGCTTCGATCC MspI AB026956
34 Hoxb5a 8 CCACTTCAATCGCTACCTGACCAGGA CAATGGCATGCTGAAAAGTGCTGCGC Allele specific AB026959
35 Hoxb5b 19 CCTTGGATGCGGAAACTGCACATAAGC AGCGTCTGGTAGCGGGTGTACGCAG DdeI AB026962
36 Hoxb6b 19 CCACTTCAATCGCTACCTGACCAGGA CAATGGCATGCTGAAAAGTGCTGCGC Allele specific AB026964
37 Hoxb9a 8 GAGTAAGGAGGGATGTGAAGGCAGC CGCGCGTGCAGCCAGTTGGCTGAAG XbaI AB026969
38 Hoxc10a 7 CTTGTTCAACATGTATCTGTCTCGGGAGC ACAACGATAGTGCCGCACTGTGCAG HinP1 I AB026973
39 Hoxc3a 7 CCACTTCAGCCCTTACCTTTGTCGAC CAACAATGATATGAAAAACCTGCTGGATG DraI AB026953
40 Hoxc4a 7 TCACTTCAACCGGTACCTGAGCCGC CTTAAAGGAAACCGCACAAGATAGCTACG Allele specific AB026955
41 Hoxc5a 7 TCACTTCAACCGGTACCTGAGCCGC CTTAAAGGAAACCGCACAAGATAGCTACG Allele specific AB026960
42 Hoxc9a 7 TCCAGAGTCGGAGCTGCTGACTTCG CGTCGAACGAGCATGTATCCAATTTGCC HindIII AB026970
43 Hoxd3a 21 CTGACGCATTTGTAATATATGGTTCCG GAAAAGAGCGCAACATAATTTTGGCAC in/del AB026952
44 Hoxd4b 15 CCACTTCAGCCGCTACCTCACGCG CTCTTACAGTGAGAGTTACAGCTTTCCC BbvI AB026957
45 Hoxd9a 21 GCAGCGCAGAGCAAGCGAGATTTCG GAGCGCGCGTGGATCCAGTTTGCAG MboII AB026967
46 Hoxd9b 15 CCTCTACAACATGTACTTGACCCGG CCGGCTTTGAAACATGCAGGAGGACGAG N1aIII AB026968
47 Hsc70 14 ATGCCAGAGGGAATGCCAGGAG TTCAGCATTTATTGTAGAGTGACATC DraI D13669
48 Ki-ras 6 ATGACGGAATATAAGCTGGTGGTG GAGGAAGCCCTCCGCTGTCCT in/del AF030545
49 LMP2 11 GGCTCTGATTCCAGAGTGTCTGCA CAGAGTGGCAGCTGAGCGAACCT BglII D89724
50 LMP7 11 CTGTAYGRCTGAGAAACAA TCCTTGTCCCATCCACAGAT PvuII D89725
51 mfOR2 ATGTTGATACTGTCCTGGCTTTGG AATAATCTCAGTGGTTGGTGTCCTT TaqI AB022647
52 mfOR3 14 CTGAAATGACCCCACCCTTGCA TGCAGAGGAAACATGATAGC in/del AB022648
53 mfOR4 14 TCAGAGGCATCCAAGTATCCAG GTACTCAGGGAAACGATGTAGC MnlI AB022649
54 Msx10 15 AGACCAAGTGCGAGTCACCGAACG GATGGAGAGGTACTGTTTCTGACG In/del AB033287
55 Msx4 14 ACCGAAGGAAGACTTGATGGCAGT GCATGGACAGGTACTGCTTCTGCC MnlI AB028880
56 Olgcl 12 GGCCGAGCCGTGACTTTATTTGTTCTAG GAGGGTGCTTTGCTCCACAGTTACACAA in/del AB004921
57 Olgc2 16 CAGCAGAGGGTCGTAAGAGG CGTCTTTATTTATTCACTCCTTCAG in/del AB016082
58 Olgc3 2 CTCTTGCTGATTTCTGAAC TCAGCGTCACTTCGTAAC HinfI AB000899
59 Olgc4 13 CAACGGTGCTAATGTAATGAAAGT CTCAGACATATTGGGGGAAAGTAA FokI AB000900
60 Olgc5 14 CTCAGCAGTGCCACAATAAACAATGACTCC GAACATAAATCGCTGGAGACTGACATGGGA in/del AB000901
61 Pax6 3 CCCTGTAACCACCCACTCCACCATC AACACCGGGCACTTTACAGAAGGTCCA in/del AB002408
62 Phr 17 GAYAAYTTYTGCTTCTACAAC CATGGANGCCYCAGATNGACCACAT in/del D26022
63 Red 5 TGGAGTGCAGTCCTACATGATTG CTGTCTTTGATGTAGAAACTTCAG N1aIII AB001604
64 Rhodopsin 7 AAACACCACCGAGGGGCTGATAG ATCCAGGTGAAGACCAAACCCAT EheI AB001606
65 Shh 20 ACCACTTCGAGGAGTCCCTTCAC TGTTCCCTCTCCCTTCTTGATGA RsaI AB007129
66 Six3 19 ACCCCGACTCAAGTAGGGAACTG CCAGCATGATATGGGATAGATCCAG N1aIII AJ000937
67 Tap 2 11 AAATTCTTCTGGACGGGAATCCA TCACCACAAGAGTCTGGTTTGGG in/del AB033382
68 Tp53 18 AGGTGTCCCCACCACCAAAC AGTGAGGATGGTGAGGATGGG in/del U57306
69 Trpl 18 ATGCCTTCCTTAATGATGTGTTG ACCCGCACGGGTCGTCAACG MnlI AF072305
70 Tyr 13 TACTACGTGTCCAGAGACACCTTC AGTGGACCTTCTGCAGTAGCGTTAC DraI AB010101
71 UAA 11 TCCATCAGTGTCTCTCCTCCAGAAG GCAGACACAGAGAGAATGACAGCG in/del AB026977
72 UBA 11 TCCATCAGTGTCTCTCCTCCAGAAG GCAGACACAGAGAGAATGACAGCG in/del AB026978
73 UCA 22 TATTTTTGTTGCTGTCATTG AGCCTAAATCACAAAAGGGGTTT Allele specific AB033381
74 Violet 23 GAACTTTGTCGTTCTTCTGGCGA ACTTCCTTCTCAGCCTTCTGCGT BssSI AB001605
75 Yc-1 1 GAGGTAATAGTTGGCAAAGGAGC TACTGAGCTCAACCAGAGGACA Sau3A1 AB033606
76 Yc-2 1 AAGCTGCGCACCTTCTATGAGAAGC ACTTGCGCTTGCGCTCACCAGT RsaI AB033607
77 NK-1 8 ATGACGGAATATAAGCTGGTGGTG GAGGAAGCCCTCCGCTGTCCT in/del a
78 FS-1 19 GAATTCAAGCCAAAGATG TTAACTGAAACAAAATGAAGG Allele specific AB033330
79 OPH3-1 12 ACTCTGTCAGTCTGGATCTG ATGCTGATAACATGAGGTGC Allele specific AB033329
80 Can3 7 GAAACTAGTGCTGACAAGCAAGGC GAGCTGTGGAAGTCCCTCCATTT in/del AB033286

Act-c, cytosolic β actin; Act-m, muscle actin; B2m β2-microglobulin; Bf/C2, complement factor B/C2; Blue, blue visual pigment; C3-1 and C3-2, complement C3; C4, complement C4; Casp3A and Casp3B, caspase 3; DAB, MHC class II B; Ef-1A, elongation factor lα; Eya, eyes absent; Fgfr, fibroblast growth factor receptor; Green, green visual pigment; Hox, homeobox gene; Hsc70, 70-kD heat-shock protein cognate; Ki-ras, ki-ras proto-oncogene, LMP, low-molecular-weight polypeptide; mfOR, olfactory receptor; Msx, msh/msx class homeobox; Olgc, guanylyl cyclase; Pax6, paired box homeotic gene; Phr, photolyase; Red, red visual pigment; Rhodopsin, rhodopsine; Shh, sonic hedgehog; Six3, sine oculis related gene 3; Tap, transport associated protein; Tp53, tumor suppressor protein p53; Trpl, tryrosinase related protein 1; Tyr, tyrosinase; UAA, UBA, and UCA, MHC class I A; Violet, violet visual pigment. Yc-land Yc-2 are the expressed sequence tagged site markers located on the sex chromosome.

a

NK-1 is a marker that is amplified under low annealing temperature (55°) but not amplified under high annealing temperature (60°) using primers for Ki-ras. FS-1 and OPH3-1 are anonymous sequence tagged site markers. Can3 is a simple sequence repeat (CA repeat) marker.

TABLE 2

List of EST and STS markers mapped by PCR-RFLP

No. Gene LG Primer forward Primer reverse Polymorphism DDBJ/GenBank accession no.
1 Act-c 8 AGCCGAGAGGGAAATTGTCCGT CAACTGCAGATGCCTGGGGTG MspI D89627
2 Act-m 3 CTGCTGAGCGTGAGATCGTG GTTTTCACAGCCTCTGTCTCCG FokI D87740
3 B2m 23 ATGAAAGAGCTTTTCTTCATTGC CTGGCCAGGGTCATGACTGTACAC in/del AB006593
4 Bf/C2 14 GCTCAACATCTACATTCGCCT TGACAACTTCATACACATCA RsaI D84063
CCTCTTTGGAAACAGAC TTCACAGCTCAGCAGGT
5 Blue 5 TCCTGTGTGTCGAAGGCCTCCACA GACTTTTGAGACTTCAGTGGTTGA in/del AB001602
6 C3-1 1 GCAGAGATGCTTTGAAT ATTTTATTCTGCACACATCTTTTACCA HinfI AB025575
7 C3-2 1 GCAGAGATGCTTTGAAT TTTCCACTGGGCCTTGGTAAAAT HphI AB025576
8 C4 16 TGTGCAGAAAGACCCTGCTATAAGG TGGTGTTATGGCGGAGGCAAG in/del AB025577
9 Casp3A 10 TGATATACGGCACTGATGGTCCGG GGTGCTCCTCCACGAGTAATAGCC N1aIII AB032609
10 Casp3B 1 CAGATTAAACAGCTTTTGACTGATGGT TGACTCAAAAGGATGCAGACGA in/del AB032608
11 DAB 18 GTCTGGAGAGAAAATCTCCTG TCTGACTCTGGCATGGACGGGT in/del AB033212
12 dd001 22 CCATCAACACCAGCAGTAATCA GGACAGGTTGTGTTTTTGAAATTTGC EcoRI AB033201
13 dd004 7 CAGTCACAGCAAGGCTCTCC GTCCAAAGTGCACGACTTCC in/del AB032765
14 dd007 6 CTCCCCTCTTAAGGCAAAGATG CAGTTTATCCCGTCTCAACTG MnlI AB033202
15 dd009 22 CCACAGACCCAAGACTGGGC CAGCTGATGAATGGTAATGC MspI AB033203
16 dd024 7 GTTCCTGTCAGCAGCGTATTT AGCCATAAAGAAGAACAACCCA FokI AB033204
17 dd039 15 TGGGAGTGGTGTAGGACTTCTT TGTTAAACGAAGGGGCTTGTTAG in/del AB033205
18 dd048 1 ACGGTTCTTCTCCTGTGGTCTA AACAATACAAACTGAGACCCTGC Allele specific AB033206
19 Ef-IA 11 AATGTGGAGTCCTATCAG AGGACACGTGTTACTCCCAC in/del AB020734
20 Eya3 11 CCAACTGTTTGATTTACGTGTTCACGCA AAGCCATCAGCCAGGAAGTTGTAGTT Allele specific AB032898
21 Fgfr2 15 AAGGACAAACCCAAGGAGGCTGCT TTGTTCGTCTGAGACACGAGCAATG in/del D13551
22 Fgfr3 22 TAAGGAGAAGCCCAATAAGCCACTG CTGCTCATCTGGAATTTTGCAGGTG AvaII D13552
23 Fgfr4 14 CAAGGACGGCCCGGAGCAGGCCACC CTGTTCCTCTGGCACTTTGGTCACA HinfI D13553
24 Green 5 CTTCTTTTCAAAGAGCTCAGCCC ACAGGCTATCATAGTCGAGGCTG in/del AB001603
25 Hoxa10a 11 CCTCTTCAACATGTACCTGACCCGAG TTGGACCCCACAGTGGAAATGAGTCATATT Allele specific AB026974
26 Hoxala 11 CCATTTCAACAAGTACCTGACTCGGGCT GCACACGATTGACCCGTAAACGTCTC Psp1406 I AB026948
27 Hoxa3a 11 GTACGCCATGCCAACGTCATATCCAC AAGGTGGGAGCCTTGAGGAGGCGCA Allele specific AB026951
28 Hoxa4a 11 CCACTTTAACCGGTATCTGACCCGCA CAAGAGTGTAAAATACTGAAGATCGGTCCATC Allele specific AB026954
29 Hoxa5a 11 CCACTTTAACCGGTATCTGACCCGCA CAAGAGTGTAAAATACTGAAGATCGGTCCATC Allele specific AB026961
30 Hoxa9a 11 GCATCACCAAGAGAGAAGGACGAGCTG CACTCGCGTGGAGCCAGTTGGAAAC HinP1 I AB026972
31 Hoxa9b 16 CTTTTGTGAATATCCCGTGCGAGTCCTC TGGTGGGCTTCGCTTGCAGCCAAC Allele specific AB026971
32 Hoxb1b 19 CCACTTCAACAAGTACCTGACCCGC GTGCAAACAATGACACCAACTCAAATCACAGC HaeIII AB026947
33 Hoxb4a 8 TCACTACAACAGATACCTGACGCGCAGGC ACGGACGTGAGAAGGAATCGCTTCGATCC MspI AB026956
34 Hoxb5a 8 CCACTTCAATCGCTACCTGACCAGGA CAATGGCATGCTGAAAAGTGCTGCGC Allele specific AB026959
35 Hoxb5b 19 CCTTGGATGCGGAAACTGCACATAAGC AGCGTCTGGTAGCGGGTGTACGCAG DdeI AB026962
36 Hoxb6b 19 CCACTTCAATCGCTACCTGACCAGGA CAATGGCATGCTGAAAAGTGCTGCGC Allele specific AB026964
37 Hoxb9a 8 GAGTAAGGAGGGATGTGAAGGCAGC CGCGCGTGCAGCCAGTTGGCTGAAG XbaI AB026969
38 Hoxc10a 7 CTTGTTCAACATGTATCTGTCTCGGGAGC ACAACGATAGTGCCGCACTGTGCAG HinP1 I AB026973
39 Hoxc3a 7 CCACTTCAGCCCTTACCTTTGTCGAC CAACAATGATATGAAAAACCTGCTGGATG DraI AB026953
40 Hoxc4a 7 TCACTTCAACCGGTACCTGAGCCGC CTTAAAGGAAACCGCACAAGATAGCTACG Allele specific AB026955
41 Hoxc5a 7 TCACTTCAACCGGTACCTGAGCCGC CTTAAAGGAAACCGCACAAGATAGCTACG Allele specific AB026960
42 Hoxc9a 7 TCCAGAGTCGGAGCTGCTGACTTCG CGTCGAACGAGCATGTATCCAATTTGCC HindIII AB026970
43 Hoxd3a 21 CTGACGCATTTGTAATATATGGTTCCG GAAAAGAGCGCAACATAATTTTGGCAC in/del AB026952
44 Hoxd4b 15 CCACTTCAGCCGCTACCTCACGCG CTCTTACAGTGAGAGTTACAGCTTTCCC BbvI AB026957
45 Hoxd9a 21 GCAGCGCAGAGCAAGCGAGATTTCG GAGCGCGCGTGGATCCAGTTTGCAG MboII AB026967
46 Hoxd9b 15 CCTCTACAACATGTACTTGACCCGG CCGGCTTTGAAACATGCAGGAGGACGAG N1aIII AB026968
47 Hsc70 14 ATGCCAGAGGGAATGCCAGGAG TTCAGCATTTATTGTAGAGTGACATC DraI D13669
48 Ki-ras 6 ATGACGGAATATAAGCTGGTGGTG GAGGAAGCCCTCCGCTGTCCT in/del AF030545
49 LMP2 11 GGCTCTGATTCCAGAGTGTCTGCA CAGAGTGGCAGCTGAGCGAACCT BglII D89724
50 LMP7 11 CTGTAYGRCTGAGAAACAA TCCTTGTCCCATCCACAGAT PvuII D89725
51 mfOR2 ATGTTGATACTGTCCTGGCTTTGG AATAATCTCAGTGGTTGGTGTCCTT TaqI AB022647
52 mfOR3 14 CTGAAATGACCCCACCCTTGCA TGCAGAGGAAACATGATAGC in/del AB022648
53 mfOR4 14 TCAGAGGCATCCAAGTATCCAG GTACTCAGGGAAACGATGTAGC MnlI AB022649
54 Msx10 15 AGACCAAGTGCGAGTCACCGAACG GATGGAGAGGTACTGTTTCTGACG In/del AB033287
55 Msx4 14 ACCGAAGGAAGACTTGATGGCAGT GCATGGACAGGTACTGCTTCTGCC MnlI AB028880
56 Olgcl 12 GGCCGAGCCGTGACTTTATTTGTTCTAG GAGGGTGCTTTGCTCCACAGTTACACAA in/del AB004921
57 Olgc2 16 CAGCAGAGGGTCGTAAGAGG CGTCTTTATTTATTCACTCCTTCAG in/del AB016082
58 Olgc3 2 CTCTTGCTGATTTCTGAAC TCAGCGTCACTTCGTAAC HinfI AB000899
59 Olgc4 13 CAACGGTGCTAATGTAATGAAAGT CTCAGACATATTGGGGGAAAGTAA FokI AB000900
60 Olgc5 14 CTCAGCAGTGCCACAATAAACAATGACTCC GAACATAAATCGCTGGAGACTGACATGGGA in/del AB000901
61 Pax6 3 CCCTGTAACCACCCACTCCACCATC AACACCGGGCACTTTACAGAAGGTCCA in/del AB002408
62 Phr 17 GAYAAYTTYTGCTTCTACAAC CATGGANGCCYCAGATNGACCACAT in/del D26022
63 Red 5 TGGAGTGCAGTCCTACATGATTG CTGTCTTTGATGTAGAAACTTCAG N1aIII AB001604
64 Rhodopsin 7 AAACACCACCGAGGGGCTGATAG ATCCAGGTGAAGACCAAACCCAT EheI AB001606
65 Shh 20 ACCACTTCGAGGAGTCCCTTCAC TGTTCCCTCTCCCTTCTTGATGA RsaI AB007129
66 Six3 19 ACCCCGACTCAAGTAGGGAACTG CCAGCATGATATGGGATAGATCCAG N1aIII AJ000937
67 Tap 2 11 AAATTCTTCTGGACGGGAATCCA TCACCACAAGAGTCTGGTTTGGG in/del AB033382
68 Tp53 18 AGGTGTCCCCACCACCAAAC AGTGAGGATGGTGAGGATGGG in/del U57306
69 Trpl 18 ATGCCTTCCTTAATGATGTGTTG ACCCGCACGGGTCGTCAACG MnlI AF072305
70 Tyr 13 TACTACGTGTCCAGAGACACCTTC AGTGGACCTTCTGCAGTAGCGTTAC DraI AB010101
71 UAA 11 TCCATCAGTGTCTCTCCTCCAGAAG GCAGACACAGAGAGAATGACAGCG in/del AB026977
72 UBA 11 TCCATCAGTGTCTCTCCTCCAGAAG GCAGACACAGAGAGAATGACAGCG in/del AB026978
73 UCA 22 TATTTTTGTTGCTGTCATTG AGCCTAAATCACAAAAGGGGTTT Allele specific AB033381
74 Violet 23 GAACTTTGTCGTTCTTCTGGCGA ACTTCCTTCTCAGCCTTCTGCGT BssSI AB001605
75 Yc-1 1 GAGGTAATAGTTGGCAAAGGAGC TACTGAGCTCAACCAGAGGACA Sau3A1 AB033606
76 Yc-2 1 AAGCTGCGCACCTTCTATGAGAAGC ACTTGCGCTTGCGCTCACCAGT RsaI AB033607
77 NK-1 8 ATGACGGAATATAAGCTGGTGGTG GAGGAAGCCCTCCGCTGTCCT in/del a
78 FS-1 19 GAATTCAAGCCAAAGATG TTAACTGAAACAAAATGAAGG Allele specific AB033330
79 OPH3-1 12 ACTCTGTCAGTCTGGATCTG ATGCTGATAACATGAGGTGC Allele specific AB033329
80 Can3 7 GAAACTAGTGCTGACAAGCAAGGC GAGCTGTGGAAGTCCCTCCATTT in/del AB033286
No. Gene LG Primer forward Primer reverse Polymorphism DDBJ/GenBank accession no.
1 Act-c 8 AGCCGAGAGGGAAATTGTCCGT CAACTGCAGATGCCTGGGGTG MspI D89627
2 Act-m 3 CTGCTGAGCGTGAGATCGTG GTTTTCACAGCCTCTGTCTCCG FokI D87740
3 B2m 23 ATGAAAGAGCTTTTCTTCATTGC CTGGCCAGGGTCATGACTGTACAC in/del AB006593
4 Bf/C2 14 GCTCAACATCTACATTCGCCT TGACAACTTCATACACATCA RsaI D84063
CCTCTTTGGAAACAGAC TTCACAGCTCAGCAGGT
5 Blue 5 TCCTGTGTGTCGAAGGCCTCCACA GACTTTTGAGACTTCAGTGGTTGA in/del AB001602
6 C3-1 1 GCAGAGATGCTTTGAAT ATTTTATTCTGCACACATCTTTTACCA HinfI AB025575
7 C3-2 1 GCAGAGATGCTTTGAAT TTTCCACTGGGCCTTGGTAAAAT HphI AB025576
8 C4 16 TGTGCAGAAAGACCCTGCTATAAGG TGGTGTTATGGCGGAGGCAAG in/del AB025577
9 Casp3A 10 TGATATACGGCACTGATGGTCCGG GGTGCTCCTCCACGAGTAATAGCC N1aIII AB032609
10 Casp3B 1 CAGATTAAACAGCTTTTGACTGATGGT TGACTCAAAAGGATGCAGACGA in/del AB032608
11 DAB 18 GTCTGGAGAGAAAATCTCCTG TCTGACTCTGGCATGGACGGGT in/del AB033212
12 dd001 22 CCATCAACACCAGCAGTAATCA GGACAGGTTGTGTTTTTGAAATTTGC EcoRI AB033201
13 dd004 7 CAGTCACAGCAAGGCTCTCC GTCCAAAGTGCACGACTTCC in/del AB032765
14 dd007 6 CTCCCCTCTTAAGGCAAAGATG CAGTTTATCCCGTCTCAACTG MnlI AB033202
15 dd009 22 CCACAGACCCAAGACTGGGC CAGCTGATGAATGGTAATGC MspI AB033203
16 dd024 7 GTTCCTGTCAGCAGCGTATTT AGCCATAAAGAAGAACAACCCA FokI AB033204
17 dd039 15 TGGGAGTGGTGTAGGACTTCTT TGTTAAACGAAGGGGCTTGTTAG in/del AB033205
18 dd048 1 ACGGTTCTTCTCCTGTGGTCTA AACAATACAAACTGAGACCCTGC Allele specific AB033206
19 Ef-IA 11 AATGTGGAGTCCTATCAG AGGACACGTGTTACTCCCAC in/del AB020734
20 Eya3 11 CCAACTGTTTGATTTACGTGTTCACGCA AAGCCATCAGCCAGGAAGTTGTAGTT Allele specific AB032898
21 Fgfr2 15 AAGGACAAACCCAAGGAGGCTGCT TTGTTCGTCTGAGACACGAGCAATG in/del D13551
22 Fgfr3 22 TAAGGAGAAGCCCAATAAGCCACTG CTGCTCATCTGGAATTTTGCAGGTG AvaII D13552
23 Fgfr4 14 CAAGGACGGCCCGGAGCAGGCCACC CTGTTCCTCTGGCACTTTGGTCACA HinfI D13553
24 Green 5 CTTCTTTTCAAAGAGCTCAGCCC ACAGGCTATCATAGTCGAGGCTG in/del AB001603
25 Hoxa10a 11 CCTCTTCAACATGTACCTGACCCGAG TTGGACCCCACAGTGGAAATGAGTCATATT Allele specific AB026974
26 Hoxala 11 CCATTTCAACAAGTACCTGACTCGGGCT GCACACGATTGACCCGTAAACGTCTC Psp1406 I AB026948
27 Hoxa3a 11 GTACGCCATGCCAACGTCATATCCAC AAGGTGGGAGCCTTGAGGAGGCGCA Allele specific AB026951
28 Hoxa4a 11 CCACTTTAACCGGTATCTGACCCGCA CAAGAGTGTAAAATACTGAAGATCGGTCCATC Allele specific AB026954
29 Hoxa5a 11 CCACTTTAACCGGTATCTGACCCGCA CAAGAGTGTAAAATACTGAAGATCGGTCCATC Allele specific AB026961
30 Hoxa9a 11 GCATCACCAAGAGAGAAGGACGAGCTG CACTCGCGTGGAGCCAGTTGGAAAC HinP1 I AB026972
31 Hoxa9b 16 CTTTTGTGAATATCCCGTGCGAGTCCTC TGGTGGGCTTCGCTTGCAGCCAAC Allele specific AB026971
32 Hoxb1b 19 CCACTTCAACAAGTACCTGACCCGC GTGCAAACAATGACACCAACTCAAATCACAGC HaeIII AB026947
33 Hoxb4a 8 TCACTACAACAGATACCTGACGCGCAGGC ACGGACGTGAGAAGGAATCGCTTCGATCC MspI AB026956
34 Hoxb5a 8 CCACTTCAATCGCTACCTGACCAGGA CAATGGCATGCTGAAAAGTGCTGCGC Allele specific AB026959
35 Hoxb5b 19 CCTTGGATGCGGAAACTGCACATAAGC AGCGTCTGGTAGCGGGTGTACGCAG DdeI AB026962
36 Hoxb6b 19 CCACTTCAATCGCTACCTGACCAGGA CAATGGCATGCTGAAAAGTGCTGCGC Allele specific AB026964
37 Hoxb9a 8 GAGTAAGGAGGGATGTGAAGGCAGC CGCGCGTGCAGCCAGTTGGCTGAAG XbaI AB026969
38 Hoxc10a 7 CTTGTTCAACATGTATCTGTCTCGGGAGC ACAACGATAGTGCCGCACTGTGCAG HinP1 I AB026973
39 Hoxc3a 7 CCACTTCAGCCCTTACCTTTGTCGAC CAACAATGATATGAAAAACCTGCTGGATG DraI AB026953
40 Hoxc4a 7 TCACTTCAACCGGTACCTGAGCCGC CTTAAAGGAAACCGCACAAGATAGCTACG Allele specific AB026955
41 Hoxc5a 7 TCACTTCAACCGGTACCTGAGCCGC CTTAAAGGAAACCGCACAAGATAGCTACG Allele specific AB026960
42 Hoxc9a 7 TCCAGAGTCGGAGCTGCTGACTTCG CGTCGAACGAGCATGTATCCAATTTGCC HindIII AB026970
43 Hoxd3a 21 CTGACGCATTTGTAATATATGGTTCCG GAAAAGAGCGCAACATAATTTTGGCAC in/del AB026952
44 Hoxd4b 15 CCACTTCAGCCGCTACCTCACGCG CTCTTACAGTGAGAGTTACAGCTTTCCC BbvI AB026957
45 Hoxd9a 21 GCAGCGCAGAGCAAGCGAGATTTCG GAGCGCGCGTGGATCCAGTTTGCAG MboII AB026967
46 Hoxd9b 15 CCTCTACAACATGTACTTGACCCGG CCGGCTTTGAAACATGCAGGAGGACGAG N1aIII AB026968
47 Hsc70 14 ATGCCAGAGGGAATGCCAGGAG TTCAGCATTTATTGTAGAGTGACATC DraI D13669
48 Ki-ras 6 ATGACGGAATATAAGCTGGTGGTG GAGGAAGCCCTCCGCTGTCCT in/del AF030545
49 LMP2 11 GGCTCTGATTCCAGAGTGTCTGCA CAGAGTGGCAGCTGAGCGAACCT BglII D89724
50 LMP7 11 CTGTAYGRCTGAGAAACAA TCCTTGTCCCATCCACAGAT PvuII D89725
51 mfOR2 ATGTTGATACTGTCCTGGCTTTGG AATAATCTCAGTGGTTGGTGTCCTT TaqI AB022647
52 mfOR3 14 CTGAAATGACCCCACCCTTGCA TGCAGAGGAAACATGATAGC in/del AB022648
53 mfOR4 14 TCAGAGGCATCCAAGTATCCAG GTACTCAGGGAAACGATGTAGC MnlI AB022649
54 Msx10 15 AGACCAAGTGCGAGTCACCGAACG GATGGAGAGGTACTGTTTCTGACG In/del AB033287
55 Msx4 14 ACCGAAGGAAGACTTGATGGCAGT GCATGGACAGGTACTGCTTCTGCC MnlI AB028880
56 Olgcl 12 GGCCGAGCCGTGACTTTATTTGTTCTAG GAGGGTGCTTTGCTCCACAGTTACACAA in/del AB004921
57 Olgc2 16 CAGCAGAGGGTCGTAAGAGG CGTCTTTATTTATTCACTCCTTCAG in/del AB016082
58 Olgc3 2 CTCTTGCTGATTTCTGAAC TCAGCGTCACTTCGTAAC HinfI AB000899
59 Olgc4 13 CAACGGTGCTAATGTAATGAAAGT CTCAGACATATTGGGGGAAAGTAA FokI AB000900
60 Olgc5 14 CTCAGCAGTGCCACAATAAACAATGACTCC GAACATAAATCGCTGGAGACTGACATGGGA in/del AB000901
61 Pax6 3 CCCTGTAACCACCCACTCCACCATC AACACCGGGCACTTTACAGAAGGTCCA in/del AB002408
62 Phr 17 GAYAAYTTYTGCTTCTACAAC CATGGANGCCYCAGATNGACCACAT in/del D26022
63 Red 5 TGGAGTGCAGTCCTACATGATTG CTGTCTTTGATGTAGAAACTTCAG N1aIII AB001604
64 Rhodopsin 7 AAACACCACCGAGGGGCTGATAG ATCCAGGTGAAGACCAAACCCAT EheI AB001606
65 Shh 20 ACCACTTCGAGGAGTCCCTTCAC TGTTCCCTCTCCCTTCTTGATGA RsaI AB007129
66 Six3 19 ACCCCGACTCAAGTAGGGAACTG CCAGCATGATATGGGATAGATCCAG N1aIII AJ000937
67 Tap 2 11 AAATTCTTCTGGACGGGAATCCA TCACCACAAGAGTCTGGTTTGGG in/del AB033382
68 Tp53 18 AGGTGTCCCCACCACCAAAC AGTGAGGATGGTGAGGATGGG in/del U57306
69 Trpl 18 ATGCCTTCCTTAATGATGTGTTG ACCCGCACGGGTCGTCAACG MnlI AF072305
70 Tyr 13 TACTACGTGTCCAGAGACACCTTC AGTGGACCTTCTGCAGTAGCGTTAC DraI AB010101
71 UAA 11 TCCATCAGTGTCTCTCCTCCAGAAG GCAGACACAGAGAGAATGACAGCG in/del AB026977
72 UBA 11 TCCATCAGTGTCTCTCCTCCAGAAG GCAGACACAGAGAGAATGACAGCG in/del AB026978
73 UCA 22 TATTTTTGTTGCTGTCATTG AGCCTAAATCACAAAAGGGGTTT Allele specific AB033381
74 Violet 23 GAACTTTGTCGTTCTTCTGGCGA ACTTCCTTCTCAGCCTTCTGCGT BssSI AB001605
75 Yc-1 1 GAGGTAATAGTTGGCAAAGGAGC TACTGAGCTCAACCAGAGGACA Sau3A1 AB033606
76 Yc-2 1 AAGCTGCGCACCTTCTATGAGAAGC ACTTGCGCTTGCGCTCACCAGT RsaI AB033607
77 NK-1 8 ATGACGGAATATAAGCTGGTGGTG GAGGAAGCCCTCCGCTGTCCT in/del a
78 FS-1 19 GAATTCAAGCCAAAGATG TTAACTGAAACAAAATGAAGG Allele specific AB033330
79 OPH3-1 12 ACTCTGTCAGTCTGGATCTG ATGCTGATAACATGAGGTGC Allele specific AB033329
80 Can3 7 GAAACTAGTGCTGACAAGCAAGGC GAGCTGTGGAAGTCCCTCCATTT in/del AB033286

Act-c, cytosolic β actin; Act-m, muscle actin; B2m β2-microglobulin; Bf/C2, complement factor B/C2; Blue, blue visual pigment; C3-1 and C3-2, complement C3; C4, complement C4; Casp3A and Casp3B, caspase 3; DAB, MHC class II B; Ef-1A, elongation factor lα; Eya, eyes absent; Fgfr, fibroblast growth factor receptor; Green, green visual pigment; Hox, homeobox gene; Hsc70, 70-kD heat-shock protein cognate; Ki-ras, ki-ras proto-oncogene, LMP, low-molecular-weight polypeptide; mfOR, olfactory receptor; Msx, msh/msx class homeobox; Olgc, guanylyl cyclase; Pax6, paired box homeotic gene; Phr, photolyase; Red, red visual pigment; Rhodopsin, rhodopsine; Shh, sonic hedgehog; Six3, sine oculis related gene 3; Tap, transport associated protein; Tp53, tumor suppressor protein p53; Trpl, tryrosinase related protein 1; Tyr, tyrosinase; UAA, UBA, and UCA, MHC class I A; Violet, violet visual pigment. Yc-land Yc-2 are the expressed sequence tagged site markers located on the sex chromosome.

a

NK-1 is a marker that is amplified under low annealing temperature (55°) but not amplified under high annealing temperature (60°) using primers for Ki-ras. FS-1 and OPH3-1 are anonymous sequence tagged site markers. Can3 is a simple sequence repeat (CA repeat) marker.

TABLE 3

Primers used for RAPD and IRS marker analysis

Primers Sequence Length (mer)
DxIR ATGCCGTCCTTTATCTAGAAC 21
HSP7 CGATTTGATGATCATGTTGTACAGT 25
HSP8 CTTCATCAGGATTTATGATCTTGTT 25
LCF ATGGACCTGCTGGCCAAAGCA 21
M3 CCTGTCGAAAGGGAGTCAAATTAT 24
pBR ATGCAGGAGTCGCAT 15
T7 GCATAATACGACTCACTATA 20
TyrA ATGTTCTTGGCTGTTTTGTA 20
U42 TTCCATACCTGGGAACGAGT 20
IRS-A TGGCGACCCCTGATGGGAGAA 21
IRS-B CAGCACGAGCTAAACTGGGCT 21
IRS-C TGGGGTCATCTAAGATAGCTC 21
IRS-D TCAGAGCACTGTCTAGTGGGT 21
IRS-E GTCATNGTAGGGAGAACANGTCAATG 26
IRS-F CCACGGATGCACGAGGAGAACACAC 25
IRS-G GCACACGCATACACAGACATGCACACAC 28
Primers Sequence Length (mer)
DxIR ATGCCGTCCTTTATCTAGAAC 21
HSP7 CGATTTGATGATCATGTTGTACAGT 25
HSP8 CTTCATCAGGATTTATGATCTTGTT 25
LCF ATGGACCTGCTGGCCAAAGCA 21
M3 CCTGTCGAAAGGGAGTCAAATTAT 24
pBR ATGCAGGAGTCGCAT 15
T7 GCATAATACGACTCACTATA 20
TyrA ATGTTCTTGGCTGTTTTGTA 20
U42 TTCCATACCTGGGAACGAGT 20
IRS-A TGGCGACCCCTGATGGGAGAA 21
IRS-B CAGCACGAGCTAAACTGGGCT 21
IRS-C TGGGGTCATCTAAGATAGCTC 21
IRS-D TCAGAGCACTGTCTAGTGGGT 21
IRS-E GTCATNGTAGGGAGAACANGTCAATG 26
IRS-F CCACGGATGCACGAGGAGAACACAC 25
IRS-G GCACACGCATACACAGACATGCACACAC 28

TABLE 3

Primers used for RAPD and IRS marker analysis

Primers Sequence Length (mer)
DxIR ATGCCGTCCTTTATCTAGAAC 21
HSP7 CGATTTGATGATCATGTTGTACAGT 25
HSP8 CTTCATCAGGATTTATGATCTTGTT 25
LCF ATGGACCTGCTGGCCAAAGCA 21
M3 CCTGTCGAAAGGGAGTCAAATTAT 24
pBR ATGCAGGAGTCGCAT 15
T7 GCATAATACGACTCACTATA 20
TyrA ATGTTCTTGGCTGTTTTGTA 20
U42 TTCCATACCTGGGAACGAGT 20
IRS-A TGGCGACCCCTGATGGGAGAA 21
IRS-B CAGCACGAGCTAAACTGGGCT 21
IRS-C TGGGGTCATCTAAGATAGCTC 21
IRS-D TCAGAGCACTGTCTAGTGGGT 21
IRS-E GTCATNGTAGGGAGAACANGTCAATG 26
IRS-F CCACGGATGCACGAGGAGAACACAC 25
IRS-G GCACACGCATACACAGACATGCACACAC 28
Primers Sequence Length (mer)
DxIR ATGCCGTCCTTTATCTAGAAC 21
HSP7 CGATTTGATGATCATGTTGTACAGT 25
HSP8 CTTCATCAGGATTTATGATCTTGTT 25
LCF ATGGACCTGCTGGCCAAAGCA 21
M3 CCTGTCGAAAGGGAGTCAAATTAT 24
pBR ATGCAGGAGTCGCAT 15
T7 GCATAATACGACTCACTATA 20
TyrA ATGTTCTTGGCTGTTTTGTA 20
U42 TTCCATACCTGGGAACGAGT 20
IRS-A TGGCGACCCCTGATGGGAGAA 21
IRS-B CAGCACGAGCTAAACTGGGCT 21
IRS-C TGGGGTCATCTAAGATAGCTC 21
IRS-D TCAGAGCACTGTCTAGTGGGT 21
IRS-E GTCATNGTAGGGAGAACANGTCAATG 26
IRS-F CCACGGATGCACGAGGAGAACACAC 25
IRS-G GCACACGCATACACAGACATGCACACAC 28

score of 3.5 and maximum θ of 0.35 were used for grouping the markers. Marker orders were modified after visual analysis of the distribution of marker genotypes in the reference mapping panel.

RESULTS

Medaka linkage map: Linkage analysis of 634 markers, including 488 AFLPs, 76 ESTs, 28 RAPDs, 34 IRSs, 4 STSs, and 4 phenotypic markers, was used to construct a genetic map with 24 linkage groups corresponding to the haploid number of Medaka chromosomes (Figure 1). One EST marker (mfOR2) was not linked with any other markers under the linkage criteria used in the present study. The cumulative map length was 1354.5 cM. Table 4 shows the cumulative map length and number of loci in each linkage group. The previous map (Wada et al. 1995) consists of 170 markers in which 96 loci showed recombination in 20–100 meioses. The present map consists of 633 markers in which 258 loci showed recombination in 39 meioses. In comparison between the present and previous maps, the density of informative loci in the present map is 2.6 times higher than that in the previous map.

Of 76 EST loci, 9 were unidentified expressed genes cloned by differential display to detect mRNA sequence differences between the HNI and AA2 strains. We have described these unidentified expressed genes as dd001 to dd0048. The genes Yc-1 and Yc-2 were identified initially as sex-linked markers (H. Wada, H. Mitani and A. Shima, unpublished results).

We renamed each linkage group according to the number of the AFLP, RAPD, and IRS markers for the following reasons. First, because the anonymous DNA markers were expected to be randomly distributed throughout the genome and because the number of markers on each linkage group may reflect the physical size of each chromosome, the order of the linkage groups may reflect the order of chromosome size. Second, 11 linkage groups (II, VIII, X, XIV, XIX, XXIII, XXIV, XXV, XXVI, XXVII, and XXVIII) previously published contained fewer than three loci and the correspondence of LGVII, IX, X, XIII, XXII, XXIV, XXVI, XXVII, and XXVIII to the linkage groups in the current map could not be determined. To reduce the possible confusion of the linkage group names we used arabic numerals instead of the roman numerals for the name of each linkage group. The names of the current linkage groups (LG) refer to the previous linkage groups (Wada et al. 1995) as follows: LG1, I; LG2, III; LG3, XII; LG4, V; LG5, VI; LG6, XI; LG8, XVII; LG12, II; LG13, XVIII; LG14, XX; LG15, XXI; LG16, IV; LG18, XIV; LG19, XVI; LG20, VIII; LG21, XV; LG22, XXIII; LG23, XXV; and LG24, XIX. Linkage groups LG7, LG9, LG10, LG11, and LG17 were newly identified linkage groups in the present study.

Linkage relationships: Ten kinds of gene families were mapped in the present study: actin, caspase, fibroblast growth factor receptor, opsin (visual pigment), guanylyl cyclase, msx/msh type homeobox, hox, complement C3 and C4, olfactory receptor, and immunoglobulin super gene families. The members of the actin, caspase, fibroblast growth factor receptor, and guanylyl cyclase gene families were not linked. The red, green, and blue visual pigment genes were mapped to LG5. The violet and rhodopsin genes were located on LG23 and LG7, respectively. The Bf/C2, Msx/msh related gene (Msx4), hsc70, mfOR3, mfOR4, and Fgfr4 loci mapped to LG14. Linkage was detected between the major histocompatibility (MHC) class I A genes (UAA and UBA), LMP2, LMP7, Tap2, HoxA cluster, and the Ef-1A genes (LG11). The third MHC class I A gene, UCA, mapped to LG22. Twenty-two Hox genes mapped to seven different linkage groups (LG7, LG8, LG111, LG15, LG16, LG19, and LG21).

Linkage group 1 had a total map length of 44.2 cM, and 49 mapped loci. The male-determining factor, Y, was mapped to LG1, and, as previously reported, a phenotypic trait marker, lf locus (Wada et al. 1995, 1998), was mapped to LG1 in the present study. The R locus has been reported to be linked with the Y locus (Aida 1921). In addition to these loci, we have placed six EST markers, the caspase 3B gene, two C3 genes (Kuroda et al. 2000), and three unidentified expressed genes (Yc-1, Yc-2, and dd048) on LG1. These loci were located on the X and Y chromosomes and genetic recombination was observed among the markers on LG1.

DISCUSSION

Establishment of cell lines for a reference mapping panel: The accumulation of mapping data using the same mapping panel is very important for eliminating linkage relationship ambiguities among markers. Because the body of Medaka is small, the amount of DNA from each individual could be a limiting factor for data accumulation. To overcome this, we established 39 permanently growing cell lines from backcross progeny obtained by crossing AA2 female with (AA2 × HNI) F1 male. Thus, DNA from these cell lines could be used, even for techniques such as RFLP analysis by Southern blotting, without exhausting the reserve of genomic DNA. Possible genetic alternations during cell subculture could be checked using DNA extracted from the remaining bodies or another typing panel. In our case, the data obtained from the cell lines were consistent with the typing data from another panel (Kuroda et al. 1996; Namikawa-Yamada et al. 1997; data not shown).

Medaka linkage map: The total map length in the present study was 1354.5 cM, while the previous map had a total length of 2480 cM (Wada et al. 1995). This difference may be due to an overestimation of interlocus map distance in the previous map resulting from distance calculation errors caused by the use of two typing panels. For example, four gaps of >20 cM and one linkage group consisting of only three loci and spanning 24 cM were present in the previous map (Wada et al. 1995). In the present study, we used only one mapping panel to minimize data calculation errors.

In this study, only 1 (mfOR2; Sun et al. 1999) of the 80 EST and STS markers was not linked to any other marker, indicating the present linkage map provides reasonably good coverage of the Medaka genome. The number of linkage groups was 24, the same number as Medaka's haploid chromosome number. Correspondence between the linkage group and the chromosome can be clarified by the identification of a marker near the centromere, because each chromosome has only one centromere. We are now trying to identify centromeric markers using gene-centromere mapping by diploid gynogenesis (Naruse et al. 1988; Naruse and Shima 1989; Johnson et al. 1996). To date we have found centromeric markers for LG1, LG8, LG12, LG14, and LG23 (data not shown). These 5 linkage groups correspond to five different chromosomes.

MHC gene organization: Two MHC class I A genes (UAA and UBA) were linked to each other and were assigned to the same linkage group (LG11) as the LMP2, LMP7 (Namikawa-Yamada et al. 1997), and Tap2 genes. The MHC class II B (DAB) locus was mapped to LG18 and the B2m gene was mapped to LG23. No linkage was observed among the MHC class I A, MHC class II B, complement Bf/C2, C3, and C4 genes. These results indicate that the Medaka counterparts of the mammalian MHC genes are dispersed throughout the Medaka genome, except for the cluster of the MHC class I A gene and the genes involved in class I antigen presentation. A similar result has been reported in zebrafish (Bingulac-Popovic et al. 1997) and rainbow trout (Hansen et al. 1999), suggesting that a common euteleostei ancestor may have had a dispersed MHC organization. Whether the dispersed MHC is ancestral to, or derived from, the mammalian-type centralized MHC has yet to be determined; however, the genes involved in class I antigen presentation appear to constitute the core of the MHC.

Hox gene organization: Mammals have ~40 Hox genes organized into four clusters on different chromosomes (Scott 1992). Although the pufferfish has four Hox clusters (Aparicio et al. 1997), recent studies of the Hox cluster organization of zebrafish, Danio rerio, show that the zebrafish has at least seven Hox clusters, suggesting a Hox cluster duplication in an ancestor of the zebrafish lineage (Amores et al. 1998). In the present study, 22 Hox genes were mapped to seven different linkage groups in Medaka. This indicates that Medaka has at least seven Hox clusters and suggests that this fish may also have additional duplications of the Hox clusters. Medaka, pufferfish, and zebrafish are members of Beloniformes in Acanthopterigii, Tetranodon in Acanthopterigii, and Cypriniformes in Ostariophysi, respectively (Nelson 1994). Medaka and zebrafish are distributed in largely different taxonomic positions in teleost phylogeny (Nelson 1994; Naruse 1996). The additional duplications of Hox clusters seem to have happened at least before the divergence of Medaka and zebrafish, suggesting the ancestor of these species is probably a common ancestor of all teleosts. If this is the case, almost all teleosts should have the extra “fish” Hox clusters, and the lineage-specific loss of Hox genes or clusters, as observed in pufferfish, might explain the remarkable variation in teleost morphology.

Conservation of synteny: The Bf/C2, Msx4, and Fgfr4 genes were linked in both Medaka and zebrafish, although the gene order was different: Fgfr4-Bf/C2-Msx4 in Medaka and Bf/C2-Fgfr4-Msxd in zebrafish (Postlethwait et al. 1998). These results suggest a rearrangement

A genetic linkage map of Medaka Oryzias latipes. Map distance from the top locus is described in terms of centimorgans (Kosambi mapping function) in parentheses. The EST and phenotypic markers are described with boldface characters. Markers in the box showed no recombination in 39 meioses.

A genetic linkage map of Medaka Oryzias latipes. Map distance from the top locus is described in terms of centimorgans (Kosambi mapping function) in parentheses. The EST and phenotypic markers are described with boldface characters. Markers in the box showed no recombination in 39 meioses.

A genetic linkage map of Medaka Oryzias latipes. Map distance from the top locus is described in terms of centimorgans (Kosambi mapping function) in parentheses. The EST and phenotypic markers are described with boldface characters. Markers in the box showed no recombination in 39 meioses.

A genetic linkage map of Medaka Oryzias latipes. Map distance from the top locus is described in terms of centimorgans (Kosambi mapping function) in parentheses. The EST and phenotypic markers are described with boldface characters. Markers in the box showed no recombination in 39 meioses.

Figure 1.

A genetic linkage map of Medaka Oryzias latipes. Map distance from the top locus is described in terms of centimorgans (Kosambi mapping function) in parentheses. The EST and phenotypic markers are described with boldface characters. Markers in the box showed no recombination in 39 meioses.

TABLE 4

Distribution of markers and length for each linkage group

LG Length (cM) Total no. loci (A) No. of ESTs & phenotypic loci (B) No. of anonymous DNA loci (A-B) Expected no. of anonymous DNA loci (D) (A-B)/D
1 44.2 49 8 41 18.08 2.27
2 85.4 41 1 40 34.93 1.15
3 84.3 40 2 38 34.48 1.10
4 73.5 37 0 37 30.06 1.23
5 66.0 33 4 29 26.99 1.07
6 82.4 27 2 25 33.70 0.74
7 39.0 32 8 24 15.95 1.50
8 57.4 28 4 24 23.48 1.02
9 54.3 23 0 23 22.21 1.04
10 71.5 24 1 23 29.24 0.79
11 39.4 35 13 22 16.11 1.37
12 36.6 23 2 21 14.97 1.40
13 48.9 23 2 21 20.00 1.05
14 68.1 28 7 21 27.85 0.75
15 58.1 26 5 21 23.76 0.88
16 57.9 23 3 20 23.68 0.84
17 74.7 19 1 18 30.55 0.59
18 59.8 21 3 18 24.46 0.74
19 47.4 21 4 17 19.39 0.88
20 71.8 17 1 16 29.37 0.54
21 32.3 16 2 14 13.21 1.06
22 29.7 18 4 14 12.15 1.15
23 47.4 16 2 14 19.39 0.72
24 24.4 13 0 13 9.98 1.30
Total 1354.5 633 79 554 554
LG Length (cM) Total no. loci (A) No. of ESTs & phenotypic loci (B) No. of anonymous DNA loci (A-B) Expected no. of anonymous DNA loci (D) (A-B)/D
1 44.2 49 8 41 18.08 2.27
2 85.4 41 1 40 34.93 1.15
3 84.3 40 2 38 34.48 1.10
4 73.5 37 0 37 30.06 1.23
5 66.0 33 4 29 26.99 1.07
6 82.4 27 2 25 33.70 0.74
7 39.0 32 8 24 15.95 1.50
8 57.4 28 4 24 23.48 1.02
9 54.3 23 0 23 22.21 1.04
10 71.5 24 1 23 29.24 0.79
11 39.4 35 13 22 16.11 1.37
12 36.6 23 2 21 14.97 1.40
13 48.9 23 2 21 20.00 1.05
14 68.1 28 7 21 27.85 0.75
15 58.1 26 5 21 23.76 0.88
16 57.9 23 3 20 23.68 0.84
17 74.7 19 1 18 30.55 0.59
18 59.8 21 3 18 24.46 0.74
19 47.4 21 4 17 19.39 0.88
20 71.8 17 1 16 29.37 0.54
21 32.3 16 2 14 13.21 1.06
22 29.7 18 4 14 12.15 1.15
23 47.4 16 2 14 19.39 0.72
24 24.4 13 0 13 9.98 1.30
Total 1354.5 633 79 554 554

TABLE 4

Distribution of markers and length for each linkage group

LG Length (cM) Total no. loci (A) No. of ESTs & phenotypic loci (B) No. of anonymous DNA loci (A-B) Expected no. of anonymous DNA loci (D) (A-B)/D
1 44.2 49 8 41 18.08 2.27
2 85.4 41 1 40 34.93 1.15
3 84.3 40 2 38 34.48 1.10
4 73.5 37 0 37 30.06 1.23
5 66.0 33 4 29 26.99 1.07
6 82.4 27 2 25 33.70 0.74
7 39.0 32 8 24 15.95 1.50
8 57.4 28 4 24 23.48 1.02
9 54.3 23 0 23 22.21 1.04
10 71.5 24 1 23 29.24 0.79
11 39.4 35 13 22 16.11 1.37
12 36.6 23 2 21 14.97 1.40
13 48.9 23 2 21 20.00 1.05
14 68.1 28 7 21 27.85 0.75
15 58.1 26 5 21 23.76 0.88
16 57.9 23 3 20 23.68 0.84
17 74.7 19 1 18 30.55 0.59
18 59.8 21 3 18 24.46 0.74
19 47.4 21 4 17 19.39 0.88
20 71.8 17 1 16 29.37 0.54
21 32.3 16 2 14 13.21 1.06
22 29.7 18 4 14 12.15 1.15
23 47.4 16 2 14 19.39 0.72
24 24.4 13 0 13 9.98 1.30
Total 1354.5 633 79 554 554
LG Length (cM) Total no. loci (A) No. of ESTs & phenotypic loci (B) No. of anonymous DNA loci (A-B) Expected no. of anonymous DNA loci (D) (A-B)/D
1 44.2 49 8 41 18.08 2.27
2 85.4 41 1 40 34.93 1.15
3 84.3 40 2 38 34.48 1.10
4 73.5 37 0 37 30.06 1.23
5 66.0 33 4 29 26.99 1.07
6 82.4 27 2 25 33.70 0.74
7 39.0 32 8 24 15.95 1.50
8 57.4 28 4 24 23.48 1.02
9 54.3 23 0 23 22.21 1.04
10 71.5 24 1 23 29.24 0.79
11 39.4 35 13 22 16.11 1.37
12 36.6 23 2 21 14.97 1.40
13 48.9 23 2 21 20.00 1.05
14 68.1 28 7 21 27.85 0.75
15 58.1 26 5 21 23.76 0.88
16 57.9 23 3 20 23.68 0.84
17 74.7 19 1 18 30.55 0.59
18 59.8 21 3 18 24.46 0.74
19 47.4 21 4 17 19.39 0.88
20 71.8 17 1 16 29.37 0.54
21 32.3 16 2 14 13.21 1.06
22 29.7 18 4 14 12.15 1.15
23 47.4 16 2 14 19.39 0.72
24 24.4 13 0 13 9.98 1.30
Total 1354.5 633 79 554 554

in gene order between the two fish. The synteny among MHC class I A genes, LMP2, LMP7, Tap2, and the HoxA cluster loci was conserved between Medaka (LG11) and zebrafish (LG19; Bingulac-Popovic et al. 1997; Postlethwait et al. 1998). The Ef-1a locus was located on LG11 in Medaka. In mammals, the MHC class I A genes, LMP2, LMP7, HoxA cluster, and Ef-1a loci, were mapped to the same chromosome (http://www4.ncbi.nlm.nih.gov/Omim/). Thus, conserved synteny was found between the mammals, zebrafish (Amores et al. 1998; Postlethwait et al. 1998), and Medaka. Further accumulation of mapping information for orthologous genes of Medaka and other fish would promote an understanding of genome evolution in vertebrates.

Sex chromosomes and sex-linked genes: Although the Medaka sex chromosome was cytologically identified as one of the largest chromosomes by fluorescent in situ hybridization (FISH) analysis, no difference in morphology between the X and Y chromosomes was observed (Matsuda et al. 1998). If the size of the chromosome and recombination frequency represent the physical size of the DNA in the chromosome, the largest number of markers should be detected on LG1. Although LG1 has the largest number of markers (49), map length was 44.2 cM, which corresponds to only ~20 markers (633 × 44.2/1354.5; see Table 4). On LG1, two large clusterings of markers were observed, one with 19 markers and another with 13 markers. Map distance between these two regions was 2.6 cM, which corresponds to only a single crossover event in the 39 fish. Such large clusters of loci were not observed in zebrafish chromosomes, strongly suggesting a restriction of recombination on Medaka's sex chromosomes compared to its autosomes, although no morphological differences between X and Y chromosomes were observed.

The map presented in this study is the most detailed linkage map of Medaka currently available and has the marker density equivalent of a skeletal level map. Using the reference typing panel established in the present study, we can easily map newly identified genes and DNA markers linked with phenotypic traits of interest, without misassignment of genes or ambiguities in gene order.

Acknowledgement

We thank Drs. H. Hori and Y. Bessho at Nagoya University for sequence information of MHC class II B and tyrosinase genes. This work was supported by the Research for the Future Program (JSPS-RFTF96L00401) from the Japanese Society for the Promotion of Science to A.S. and grants from the Ministry of Education, Science, Sports and Culture, Japan to K.N. and H.M.

Footnotes

Communicating editor: N. Takahata

LITERATURE CITED

Aida

T

,

1921

On the inheritance of color in a fresh-water fish Aplocheilus latipes Temmick and Schlegel, with special reference to sex-linked inheritance

.

Genetics

6

:

554

573

.

Amores

A

,

Force

A

,

Yan

Y

,

Joly

L

,

Amemiya

C

et al. ,

1998

Zebrafish hox clusters and vertebrate genome evolution

.

Science

282

:

1711

1714

.

Aparicio

S

,

Hawker

K

,

Cottag

A

,

Mikawa

Y

,

Zuo

L

et al. ,

1997

Organization of the Fugu rubripes Hox clusters: evidence for continuing evolution of vertebrate Hox complexes

.

Nat. Genet.

16

:

79

83

.

Bingulac-Popovic

J

,

Figueroa

F

,

Sato

A

,

Talbot

W S

,

Johnson

S L

et al. ,

1997

Mapping of mhc class I and class II regions to different linkage groups in the zebrafish, Danio rerio

.

Immunogenetics

46

:

129

134

.

Davis

B

,

1964

Disc gel electrophoresis. II. Method and application to human serum proteins

.

Ann. NY Acad. Sci.

121

:

404

427

.

Dib

C

,

Faure

S

,

Fizames

C

,

Samon

D

,

Drouot

N

et al. ,

1997

A comprehensive genetic map of the human genome based on 5264 microsatellites

.

Nature

380

:

152

154

.

Dietrich

W F

,

Miller

J

,

Steen

R

,

Merchant

M A

,

Damron Boles

D

et al. ,

1997

A comprehensive genetic map of the mouse genome

.

Nature

380

:

149

151

.

Hansen

J D

,

Strassburger

P

,

Thorgaard

G H

,

Young

W P

,

Du Pasquier

L

,

1999

Expression, linkage and polymorphism of Mhc-related genes in rainbow trout, Oncorhynchus mykiss

.

J. Immunol.

163

:

774

786

.

Hyodo-Taguchi

Y

,

Sakaizumi

M

,

1993

List of inbred strains of the medaka Oryzias latipes, maintained in the division of Biology, National Institute of Radiological Sciences

.

Fish Biol. J. Medaka

5

:

5

10

.

Johnson

S L

,

Gates

M A

,

Johnson

M

,

Talbot

W S

,

Horne

S

et al. ,

1996

Centromere-linkage analysis and consolidation of the zebrafish genetic map

.

Genetics

142

:

1277

1288

.

Knapik

E W

,

Goodman

A

,

Ekker

M

,

Chevrette

M

,

Delgado

J

et al. ,

1998

A microsatellite genetic linkage map for zebrafish (Danio rerio)

.

Nat. Genet.

18

:

338

343

.

Komura

J

,

Mitani

H

,

Shima

A

,

1988

Fish cell culture: establishment of two fibroblast-like cell lines (OL-17 and OL-32) from fin of the Medaka, Oryzias latipes

.

In Vitro

24

:

294

298

.

Kubota

Y

,

Shimada

A

,

Shima

A

,

1995

DNA alternations detected in the progeny of paternally irradiated Japanese medaka fish (Oryzias latipes)

.

Proc. Natl. Acad. Sci. USA

92

:

330

334

.

Kuroda

N

,

Wada

H

,

Naruse

K

,

Shimada

A

,

Shima

A

et al. ,

1996

Molecular cloning and linkage analysis of the Japanese medaka fish complement Bf/C2 gene

.

Immunogenetics

44

:

459

467

.

Kuroda

N

,

Naruse

K

,

Shima

A

,

Nonaka

M

,

Sasaki

M

et al. ,

2000

Molecular cloning and linkage analysis of complement C3 and C4 genes of the Japanese medaka fish

.

Immunogenetics

51

:

117

128

.

Lander

E S

,

Botstein

D

,

1989

Mapping mendelian factors underlying quantitative traits using RFLP linkage maps

.

Genetics

121

:

185

199

.

Lander

E S

,

Green

P

,

Abrahamson

J

,

Barlow

A

,

Daly

M J

et al. ,

1987

MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations

.

Genomics

1

:

174

181

.

Matsuda

M

,

Kusama

T

,

Oshiro

T

,

Kurihara

Y

,

Hamaguchi

S

et al. ,

1997a

Isolation of a sex chromosome-specific DNA sequence in the medaka Oryzias latipes

.

Genes Genet. Syst.

72

:

263

268

.

Matsuda

M

,

Yonekawa

H

,

Hamaguchi

S

,

Sakaizumi

M

,

1997b

Geographic variation and diversity in the mitochondrial DNA of the medaka Oryzias latipes, as determined by restriction endonuclease analysis

.

Zool. Sci.

14

:

517

526

.

Matsuda

M

,

Matsuda

C

,

Hamaguchi

S

,

Sakaizumi

M

,

1998

Identification of the sex chromosomes of the medaka, Oryzias latipes, by fluorescence in situ hybridization

.

Cytogenet. Cell Genet.

82

:

257

262

.

McCarthy

L

,

Hunter

K

,

Schalkwyk

L

,

Riba

L

,

Anson

S

et al. ,

1995

Efficient high-resolution genetic mapping of mouse interspersed repetitive sequence PCR products, toward integrated genetic and physical mapping of the mouse genome

.

Proc. Natl. Acad. Sci. USA

92

:

5302

5306

.

Namikawa-Yamada

C

,

Naruse

K

,

Wada

H

,

Shima

A

,

Kuroda

N

et al. ,

1997

Genetic linkage between the LMP2 and LMP7 genes in the medaka fish, a teleost

.

Immunogenetics

46

:

431

433

.

Naruse

K

,

1996

Classification and phylogeny of fishes of the genus Oryzias and its relatives

.

Fish Biol. J. Medaka

8

:

1

9

.

Naruse

K

,

Shima

A

,

1989

Linkage relationships of gene loci in the medaka, Oryzias latipes (Pisces: Oryziatidae), determined by backcrosses and gynogenesis

.

Biochem. Genet.

27

:

183

198

.

Naruse

K

,

Shimada

A

,

Shima

A

,

1988

Gene-centromere mapping for 5 visible mutant loci in multiple recessive tester stock of the medaka (Oryzias latipes)

.

Zool. Sci.

5

:

489

492

.

Naruse

K

,

Mitani

H

,

Shima

A

,

1992

A highly repetitive interspersed sequence isolated from genomic DNA of the Medaka, Oryzias latipes, is conserved in three other related species within the genus Oryzias

.

J. Exp. Zool.

262

:

81

86

.

Naruse

K

,

Sakaizumi

M

,

Shima

A

,

1994

Medaka as an experimental animal for biological study

.

Fish Biol. J. Medaka

6

:

47

52

.

Nelson

J S

,

1994

Fishes of the World

.

John Wiley & Sons

,

New York

.

Postlethwait

J H

,

Johnson

S L

,

Midson

C N

,

Talbot

W S

,

Gates

M

et al. ,

1994

A genetic linkage map for zebrafish

.

Science

264

:

699

703

.

Postlethwait

J H

,

Yan

Y L

,

Gates

M A

,

Horne

S

,

Amores

A

et al. ,

1998

Vertebrate genome evolution and the zebrafish gene map

.

Nat. Genet.

18

:

301

303

.

Sakaizumi

M

,

1986

Genetic divergence in wild population of the fish Oryzias latipes (Pisces: Oryziatidae) from Japan and China

.

Genetica

69

:

119

125

.

Scott

M P

,

1992

Vertebrate homeobox gene nomenclature

.

Cell

71

:

551

553

.

Shimada

A

,

Shima

A

,

1997

Combination of genomic DNA fingerprinting into the medaka specific-locus test system for studying environmental germ-line mutagenesis

.

Mutat. Res.

399

:

149

165

.

Shimoda

N

,

Chevrette

M

,

Ekker

M

,

Kikuchi

Y

,

Hotta

Y

et al. ,

1996

Mermaid: a family of short interspersed repetitive elements widespread in vertebrates

.

Biochem. Biophys. Res. Commun.

220

:

226

232

.

Sun

H

,

Kondo

R

,

Shima

A

,

Naruse

K

,

Hori

H

et al. ,

1999

Evolutionary analysis of putative olfactory receptor genes of medaka fish, Oryzias latipes

.

Gene

231

:

137

145

.

Tomita

H

,

1975

Mutant gene in the Medaka

, pp.

251

272

in

Medaka (killifish) Biology and Strains

, edited by

Yamamoto

T

.

Keigaku

,

Tokyo

.

Tomita

H

,

1982

Gene analysis in the Medaka (Oryzias latipes)

.

Fish Biol. J. Medaka

1

:

7

10

.

Uchiyama

T

,

Hirono

I

,

Ohta

M

,

Takashima

F

,

Aoki

T

,

1996

A highly repetitive sequence isolated from genomic DNA of the medaka (Oryzias latipes)

.

Mol. Marine Biol. Biotech.

5

:

220

224

.

Vos

P

,

Hogers

R

,

Bleeker

M

,

Reijans

M

,

van Der Lee

T

,

Hornes

M

et al. ,

1995

AFLP: a new technique for DNA fingerprinting

.

Nucleic Acids Res.

23

:

4407

4414

.

Wada

H

,

Naruse

K

,

Shimada

A

,

Shima

A

,

1995

Genetic linkage map of a fish, the Japanese medaka Oryzias latipes

.

Mol. Marine Biol. Biotech.

4

:

269

274

.

Wada

H

,

Shimada

A

,

Fukamachi

S

,

Naruse

K

,

Shima

A

,

1998

Sex-linked inheritance of the lf locus in the medaka fish (Oryzias latipes)

.

Zool. Sci.

15

:

123

126

.

Yamamoto

T

,

1975

Medaka (killifish) Biology and Strains

.

Keigaku

,

Tokyo

.

Young

W P

,

Wheeler

P A

,

Coryell

V H

,

Keim

P

,

Thorgaard

G H

,

1998

A detailed linkage map of rainbow trout produced using doubled haploids

.

Genetics

148

:

839

850

.

© Genetics 2000

Citations

Views

Altmetric

Metrics

Total Views 680

495 Pageviews

185 PDF Downloads

Since 2/1/2021

Month: Total Views:
February 2021 10
March 2021 4
April 2021 9
May 2021 29
June 2021 9
July 2021 9
August 2021 10
September 2021 8
October 2021 15
November 2021 12
December 2021 9
January 2022 25
February 2022 15
March 2022 11
April 2022 17
May 2022 14
June 2022 13
July 2022 20
August 2022 17
September 2022 16
October 2022 18
November 2022 12
December 2022 14
January 2023 12
February 2023 8
March 2023 16
April 2023 17
May 2023 9
June 2023 9
July 2023 21
August 2023 15
September 2023 16
October 2023 14
November 2023 4
December 2023 18
January 2024 15
February 2024 16
March 2024 14
April 2024 17
May 2024 16
June 2024 30
July 2024 31
August 2024 25
September 2024 20
October 2024 21

×

Email alerts

Citing articles via

More from Oxford Academic