N. Nagaraj, K.R. Sahasranand, Neural signal multiplexing via compressed sensing, in IEEE Int. Conf. on Signal Processing Communications (IEEE SPCOM) 2016, IISc, Bengaluru (2016), doi:10.1109/SPCOM.2016.7746641
N. Gauvrit, H. Zenil, J.-P. Delahaye, F. Soler-Toscano, Behav. Res. Methods 46, 732 (2014) Article Google Scholar
G.T. Toussaint, N.S. Onea, Q.H. Vuong, Measuring the complexity of two-dimensional binary patterns – sub-symmetries versus papentin complexity, in 2015 14th IAPR International Conference on Machine Vision Applications (MVA)(2015), pp. 480–483
S.-T. Pan, Y.-H. Wu, Y.-L. Kung, H.-C. Chen, Heartbeat recognition from ECG signals using hidden Markov model with adaptive features, in 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)(2013), pp. 586–591
M.S. Waterman, Mathematical methods for DNA sequences(CRC Press Inc., 1989)
I. Sergienko, A. Gupal, A. Ostrovsky, Cybernet. Syst. Anal. 48, 369 (2012) Article Google Scholar
L. Narlikar, N. Mehta, S. Galande, M. Arjunwadkar, Nucl. Acids Res. 41, 1416 (2013) Article Google Scholar
A. Varga, R. Moore, Hidden Markov model decomposition of speech and noise, in International Conference on Acoustics, Speech and Signal Processing (ICASSP)(1990), pp. 845–848
M. Svoboda, L. Lukas, Application of Markov chain analysis to trend prediction of stock indices, in_Proceedings of 30th International Conference Mathematical Methodsin Economics_(Silesian University, School of Business Administration, Karviná, 2012), pp. 848–853