Three perspectives on complexity: entropy, compression, subsymmetry (original) (raw)

References

  1. L.A. Lipsitz, A.L. Goldberger, JAMA 267, 1806 (1992)
    Article Google Scholar
  2. P. Faure, H. Korn, C. R. Acad. Sci. III: Sci. 324, 773 (2001)
    Article Google Scholar
  3. H. Korn, P. Faure, C. R. Biol. 326, 787 (2003)
    Article Google Scholar
  4. N. Nagaraj, K.R. Sahasranand, Neural signal multiplexing via compressed sensing, in IEEE Int. Conf. on Signal Processing Communications (IEEE SPCOM) 2016, IISc, Bengaluru (2016), doi:10.1109/SPCOM.2016.7746641
  5. S.P. Vadhan, Found. Trends Network 7, 1 (2012)
    Article Google Scholar
  6. N. Gauvrit, H. Zenil, J.-P. Delahaye, F. Soler-Toscano, Behav. Res. Methods 46, 732 (2014)
    Article Google Scholar
  7. G.T. Toussaint, N.S. Onea, Q.H. Vuong, Measuring the complexity of two-dimensional binary patterns – sub-symmetries versus papentin complexity, in 2015 14th IAPR International Conference on Machine Vision Applications (MVA)(2015), pp. 480–483
  8. S. Lloyd, IEEE Control Syst. Mag. 21, 7 (2001)
    Article Google Scholar
  9. C. Alexander, S. Carey, Percept. Psychophys. 4, 73 (1968)
    Article Google Scholar
  10. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)
    Article Google Scholar
  11. T.M. Cover, J.A. Thomas, Elements of Information Theory(John Wiley & Sons, 2012)
  12. N. Nagaraj, K. Balasubramanian, in Handbook of Research on Applied Cybernetics and Systems Science(IGI Global, 2017), pp. 301–334
  13. M. Li, P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications (Springer Science & Business Media, 2009)
  14. A. Lempel, J. Ziv, IEEE Trans. Inf. Theor. 22, 75 (1976)
    Article Google Scholar
  15. J. Ziv, A. Lempel, IEEE Trans. Inf. Theor. 23, 337 (1977)
    Article Google Scholar
  16. M. Aboy, R. Hornero, D. Abásolo, D. Álvarez, IEEE Trans. Biomed. Eng. 53, 2282 (2006)
    Article Google Scholar
  17. N. Nagaraj, K. Balasubramanian, S. Dey, Eur. Phys. J. Special Topics 222, 847 (2013)
    Article ADS Google Scholar
  18. W. Ebeling, M.A. Jiménez-Montaño, Math. Biosci. 52, 53 (1980)
    Article Google Scholar
  19. N. Nagaraj, K. Balasubramanian, Eur. Phys. J. Special Topics 226, 2191 (2017)
    Article ADS Google Scholar
  20. K. Balasubramanian, N. Nagaraj, PeerJ 4, e2755 (2016)
    Article Google Scholar
  21. M. Virmani, N. Nagaraj, A compression-complexity measure of integrated information, arXiv:1608.08450v2(2016)
  22. J.M. Amigó, J. Szczepański, E. Wajnryb, M.V. Sanchez-Vives, Neural Comput. 16, 717 (2004)
    Article Google Scholar
  23. J. Hu, J. Gao, J.C. Principe, IEEE Trans. Biomed. Eng. 53, 2606 (2006)
    Article Google Scholar
  24. A.L. Goldberger, Physiology 6, 87 (1991)
    Article Google Scholar
  25. L.A. Lipsitz, Chaos: Interdiscip. J. Nonlinear Sci. 5, 102 (1995)
    Article Google Scholar
  26. K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos(Springer, 1997)
  27. W. Gersch, D.M. Eddy, E. Dong Jr., Comput. Biomed. Res. 3, 385 (1970)
    Article Google Scholar
  28. D. Coast, R.M. Stern, G.G. Cano, S. Briller, et al., IEEE Trans. Biomed. Eng. 37, 826 (1990)
    Article Google Scholar
  29. W. Gersch, P. Lilly, E. Dong, Comput. Biomed. Res. 8, 370 (1975)
    Article Google Scholar
  30. S.-T. Pan, Y.-H. Wu, Y.-L. Kung, H.-C. Chen, Heartbeat recognition from ECG signals using hidden Markov model with adaptive features, in 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)(2013), pp. 586–591
  31. M.S. Waterman, Mathematical methods for DNA sequences(CRC Press Inc., 1989)
  32. T.-J. Wu, Y.-C. Hsieh, L.-A. Li, Biometrics 57, 441 (2001)
    Article MathSciNet Google Scholar
  33. I. Sergienko, A. Gupal, A. Ostrovsky, Cybernet. Syst. Anal. 48, 369 (2012)
    Article Google Scholar
  34. L. Narlikar, N. Mehta, S. Galande, M. Arjunwadkar, Nucl. Acids Res. 41, 1416 (2013)
    Article Google Scholar
  35. A. Varga, R. Moore, Hidden Markov model decomposition of speech and noise, in International Conference on Acoustics, Speech and Signal Processing (ICASSP)(1990), pp. 845–848
  36. B.H. Juang, L.R. Rabiner, Technometrics 33, 251 (1991)
    Article MathSciNet Google Scholar
  37. H. Veisi, H. Sameti, Speech Commun. 55, 205 (2013)
    Article Google Scholar
  38. R.P. Rao, N. Yadav, M.N. Vahia, H. Joglekar, R. Adhikari, I. Mahadevan, Proc. Natl. Acad. Sci. U. S. A. 106, 13685 (2009)
    Article ADS Google Scholar
  39. R.P. Rao, IEEE Comput. 43, 76 (2010)
    Article Google Scholar
  40. G.A. Fink, Markov models for pattern recognition: from theory to applications(Springer Science & Business Media, 2014)
  41. G.V. Cormack, R. Horspool, Comput. J. 30, 541 (1987)
    Article Google Scholar
  42. H.S. Wang, N. Moayeri, IEEE Trans. Veh. Technol. 44, 163 (1995)
    Article Google Scholar
  43. H. Zhou, J. Bruck, IEEE Trans. Inf. Theor. 58, 2490 (2012)
    Article Google Scholar
  44. M. Svoboda, L. Lukas, Application of Markov chain analysis to trend prediction of stock indices, in_Proceedings of 30th International Conference Mathematical Methodsin Economics_(Silesian University, School of Business Administration, Karviná, 2012), pp. 848–853
  45. F.O. Mettle, E.N.B. Quaye, R.A. Laryea, SpringerPlus 3, 1 (2014)
    Article Google Scholar
  46. R. Gütig, Curr. Opin. Neurobiol. 25, 134 (2014)
    Article Google Scholar
  47. R. Brette, W. Gerstner, J. Neurophysiol. 94, 3637 (2005)
    Article Google Scholar
  48. R. Naud, N. Marcille, C. Clopath, W. Gerstner, Biol. Cybernet. 99, 335 (2008)
    Article MathSciNet Google Scholar

Download references