The Insulin Resistance Syndrome: Impact on Lipoprotein Metabolism and Atherothrombosis (original) (raw)
Journal Article
,
Correspondence and requests for reprints to Dr H. N. Ginsberg, MD, Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA. Tel: +1 212 305 9562; fax: +1 212 305 5384; e-mail: ginsbhe@cudept.cis.columbia.edu
Search for other works by this author on:
Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, USA
Search for other works by this author on:
Published:
01 October 2000
Cite
Henry N. Ginsberg, Li-Shin Huang, The Insulin Resistance Syndrome: Impact on Lipoprotein Metabolism and Atherothrombosis, Journal of Cardiovascular Risk, Volume 7, Issue 5, 1 October 2000, Pages 325–331, https://doi.org/10.1177/204748730000700505
Close
Navbar Search Filter Mobile Enter search term Search
Abstract
Insulin resistance is a common metabolic abnormality that is associated with an increased risk of both atherosclerosis and type 2 diabetes. The phenotype of insulin resistance includes a dyslipidemia characterized by an elevation of very low-density lipoprotein triglyceride, a reduction in high-density lipoprotein cholesterol, and the presence of small, triglyceride-enriched low-density lipoproteins. The underlying metabolic abnormality driving this dylipidemia is an increased assembly and secretion of very low-density lipoprotein particles, leading to an increased plasma level of triglyceride. Hypertriglyceridemia, in turn, results in a reduction in the high-density lipoprotein level and the generation of small, dense low-density lipoproteins; these events are mediated by cholesteryl ester transfer protein. In addition, hypertension, obesity, and a prothrombotic state are also integral components of the insulin resistance syndrome. In this review, we will provide a pathophysiologic basis, based on studies on humans and in tissue culture, for the dyslipidemia of insulin resistance. We will also review the effects of insulin resistance on the coagulation and fibrinolytic pathways. It is hoped that this review will allow health professionals better to evaluate and treat their patients with insulin resistance, thereby reducing the very much increased risk of atherosclerotic cardiovascular disease carried by these individuals.
Annotated References
1
Kenny
SJ
Aubert
RE
Geiss
LS.
Prevalence and incidence of insulin-dependent diabetes
. In:
Diabetes in America.
Bethesda, MD
:
National Institutes of Health
;
1995
. pp.
47
–
67
.
2
Geiss
LS
Herman
WH
Smith
PJ.
Mortality in non-insulin-dependent diabetes
.
Diabetes in America.
Bethesda, MD
:
National Institutes of Health
,
1995
:
233
–
257
.
3
NCEP Expect Panel.
Report of the National Cholesterol Education Program Expert Panel on detection, evaluation and treatment of high blood cholesterol in adults
.
Arch Intern Med
1988
;
148
:
36
–
69
.
4
Summary of the second report of the National Cholesterol Education Program (NCEP)
expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel II)
.
JAMA
1993
;
269
:
3015
–
3023
.
5
Role of cardiovascular risk factors in prevention and treatment of macrovascular disease in diabetes
.
Diabetes Care
1989
;
12
:
573
–
579
.
6
Barrett-Connor
E
Orchard
TJ.
Diabetes and heart disease
. In:
Diabetes in America.
Washington, DC
:
US Government Printing Office
;
1985
.
7
Reaven
GM
Chen
Y-D.
Role of insulin in regulation of lipoprotein metabolism in diabetes
.
Diabetes Metab Rev
1988
;
4
:
639
–
652
.
8
Reaven
GM.
Role of insulin resistance in human disease
.
Diabetes
1988
;
37
:
1595
–
1607
.
This is a detailed overview of the insulin resistance syndrome, also called syndrome X. It reviews the data linking insulin resistance to diabetes, dyslipidemia, and hypertension
.
9
Juhan-Vague
I
Alessi
M
Vague
P.
Increased plasma PAI-1 levels: a possible link between insulin resistance and atherothrombosis
.
Diabetol
1991
;
34
:
457
–
462
.
10
Davidson
PC
Albrink
MJ.
Insulin resistance in hyperglyceridemia
.
Metabolism
1965
;
14
:
1059
–
1070
.
11
Reaven
GM
Lerner
RL
Stern
MP
Farquhar
JW.
Role of insulin in endogenous hypertriglyceridemia
.
J Clin Invest
1967
;
46
:
1756
–
1767
.
12
Olefsky
JM
Farquhar
JW
Reaven
GM.
Reappraisal of the role of insulin in hypertriglyceridemia
.
Am J Med
1974
;
57
:
551
–
560
.
13
Olefsky
J
Reaven
GM
Farquhar
JW.
Effects of weight reduction on obesity. Studies of lipid and carbohydrate metabolism in normal and hyperlipoproteinemic subjects
.
J Clin Invest
1974
;
53
:
64
–
76
.
14
Albrink
MJ
Krauss
RM
Lindgren
FT
Von der Groeben
VD
Wood
PDS.
Intercorrelations among high density lipoproteins, obesity, and triglycerides in a normal population
.
Lipids
1980
;
15
:
668
–
678
.
15
Laws
A
Hoen
HM
Selby
JV
Saad
MF
Haffner
SM
Howard
BV.
Differences in insulin suppression of free fatty acid levels by gender and glucose tolerance status. Relation to plasma triglyceride and apolipoprotein B concentrations. Insulin Resistance Atherosclerosis Study (IRAS) Investigators
.
Artheroscler Thromb Vasc Biol
1997
;
17
:
64
–
71
.
A very large body of data from the IRAS study showing that the suppression of plasma free fatty acid levels is directly related to the degree of insulin resistance. Correlations between insulin resistance and other lipid/lipoprotein factors are presented as well
.
16
Howard
BV
Mayer-Davis
EJ
Goff
D
Zaccaro
DJ
Laws
A
Robbins
DC
et al.
Relationships between insulin resistance and lipoproteins in nondiabetic African Americans, Hispanics, and Non-Hispanic Whites: the Insulin Resistance Atherosclerosis Study
.
Metabolism
1998
;
47
:
1174
–
1179
.
17
Sigurdsson
G
Nicoll
A
Lewis
B.
Metabolism of very low density lipoproteins in hyperlipidemia: studies of apolipoprotein B kinetics in man
.
Eur J Clin Invest
1976
;
6
:
167
–
177
.
18
Kissebah
AH
Alfarsi
S
Evans
DJ
Adams
PW.
Integrated regulation of very-low-density lipoprotein triglyceride and apolipoprotein-B kinetics in non-insulin-dependent diabetes mellitus
.
Diabetes
1982
;
31
:
217
–
225
.
An important paper showing that type II diabetes is characterized by an increased hepatic secretion of VLDL triglyceride and apoB
.
19
Ginsberg
H
Grundy
SM.
Effect of caloric restriction on very low density lipoprotein triglyceride metabolism in subjects with diabetes mellitus
.
Diabetologia
1982
;
23
.
421
–
425
.
20
Howard
BV
Reitman
JS
Vasquez
B
Zech
L.
Very-low density lipoprotein triglyceride metabolism in non- insulin-dependent diabetes mellitus: relationship to plasma insulin and free fatty acids
.
Diabetes
1983
;
32
:
271
–
276
.
21
Yki-Jarvinen
H
Taskinen
M-R.
Interrelationship among insulin's antilipolytic and glucoregulatory effects and plasma triglycerides in nondiabetic and diabetic patients with endogenous hypertriglyceridemia
.
Diabetes
1988
;
37
:
1271
–
1278
.
22
Cabezas
M Castro
de Bruin
TW
de Valk
HW
Shoulders
CC
Jansen
H
Erkelens
D. Willem
Impaired fatty acid metabolism in familial combined hyperlipidemia. A mechanism associating hepatic apolipoprotein B overproduction and insulin resistance
.
J Clin Invest
1993
;
92
:
160
–
168
.
23
Boden
G.
Fatty acids and insulin resistance
.
Diabetes Care
1996
;
19
:
394
–
395
.
One of a series of papers by this investigator demonstrating the effects of an elevated level of free fatty acids on insulin resistance in normal and diabetic subjects
.
24
Boden
G
Chen
X.
Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes
.
J Clin Invest
1995
;
96
:
1261
–
1268
.
25
Boden
G
Chen
X
Ruiz
J
White
JV
Rossetti
L.
Mechanisms of fatty acid-induced inhibition of glucose uptake
.
J Clin Invest
1994
;
93
:
2438
–
2446
.
26
Ginsberg
HN.
Lipoprotein physiology in nondiabetic and diabetes states
.
Diabetes Care
1991
;
14
:
839
–
855
.
27
Taskinen
M-R
Packard
CJ
Shepherd
J.
Effect of insulin therapy on metabolic fate of apolipoprotein B- containing lipoproteins in NIDDM
.
Diabetes
1990
;
39
:
1017
–
1027
.
28
Lewis
GF
Uffelman
KD
Szeto
LW
Steiner
G.
Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals
.
Diabetes
1993
;
2
:
833
–
842
.
One of the first studies to show, in vivo, that hyperinsulinemia could reduce the secretion of VLDL into the plasma. In addition, this work showed that obese individuals were resistant to the effect of insulin on VLDL secretion
.
29
Lewis
GF
Uffelman
KD
Szeto
LW
Weller
B
Steiner
G.
Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans
.
J Clin Invest
1995
;
95
:
158
–
166
.
30
Malmstrom
R
Packard
CJ
Watson
TD
Ranniko
S
Caslake
M
Bedford
D
et al.
Metabolic basis of hypotriglyceridemic effects of insulin in normal men
.
Arterioscler Thromb Vasc Biol
1997
;
17
:
1454
–
1464
.
31
Malmstrom
R
Packard
CJ
Caslake
M
Bedford
D
Stewart
P
Yki-Jarvinen
H
et al.
Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects
.
Diabetes
1998
;
47
:
779
–
787
.
32
Malmstrom
R
Packard
CJ
Caslake
M
Bedford
D
Stewart
P
Yki-Jarvinen
H
et al.
Defective regulation of triglyceride metabolism by insulin in the liver in NIDDM
.
Diabetologia
1997
;
40
:
454
–
462
.
33
Kern
PA.
Lipoprotein lipase and hepatic lipase
.
Curr Opin Lipidol
1991
;
2
:
162
–
169
.
34
Taskinen
M-R.
Lipoprotein lipase in diabetes
.
Diabetes Metab Rev
1987
;
3
:
551
–
570
.
35
Brunzell
JD
Porte
DJ
Bierman
EL.
Reversible abnormalities in postheparin lipolytic activity during the late phase of release in diabetes mellitus (postheparin lipolytic activitiy in diabetes)
.
Metabolism
1975
;
24
:
1123
–
1137
.
36
Abrams
JJ
Ginsberg
H
Grundy
SM.
Metabolism of cholesterol and triglycerides in nonketotic diabetes mellitus
.
Diabetes
1982
;
31
:
903
–
910
.
37
Dammerman
M
Sandkuijl
LA
Halaas
JL
Chung
W
Breslow
JL.
An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3′ untranslated region polymorphisms
.
Proc Natl Acad Sci USA
1993
;
90
:
4562
–
4566
.
38
Li
WW
Dammerman
MM
Smith
JD
Metzger
S
Breslow
JL
Leff
T.
Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia
.
J Clin Invest
1995
;
96
:
2601
–
2605
.
39
Chen
M
Breslow
JL
Li
W
Leff
T.
Transcriptional regulation of the apoC-III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels
.
J Lipid Res
1994
;
35
:
1918
–
1924
.
40
Chait
A
Albers
JJ
Brunzell
JD.
Very low density lipoprotein overproduction in genetic forms of hypertriglyceridemia
.
Eur J Clin Invest
1980
;
10
:
17
–
22
.
One of several papers (see refs [41–44]) demonstrating increased rates of hepatic secretion of both apoB and TG in patients with combined hyperlipidemia
.
41
Teng
B
Sniderman
AD
Soular
AK
Thompson
GR.
Metabolic basis of hyperapobetalipoproteinemia: turnover of apolipoprotein B in low density lipoprotein and its precursors and subfractions compared with normal and familial hypercholesterolemia
.
J Clin Invest
1986
;
77
:
663
–
672
.
42
Janus
ED
Nicoll
A
Wootton
R
Turner
PR
Magill
PJ
Lewis
B.
Quantitative studies of very low density lipoprotein: conversion to low density lipoprotein in normal controls and primary hyperlipidaemic states and the role of direct secretion of low density lipoprotein in heterozygous familial hypercholesterolaemia
.
Eur J Clin Invest
1980
;
10
:
149
–
159
.
43
Kissebah
AH
Alfarsi
A
Adams
PW.
Integrated regulation for very low density lipoprotein triglyceride and apolipoprotein-B kinetics in man: normolipidemic subjects, familial hypertriglyceridemia and familial combined hyperlipidemia
.
Metabolism
1981
;
20
:
856
–
868
.
44
Kissebah
AH
Alfarsi
S
Evans
DJ.
Low density lipoprotein metabolism in familial combined hyperlipdemia: mechanism of the multiple lipoprotein phenotypic expression
.
Arteriosclerosis
1984
;
4
:
614
–
624
.
45
Egusa
G
Beltz
WF
Grundy
SM
Howard
BV.
Influence of obesity on the metabolism of apolipoprotein B in humans
.
J Clin Invest
1985
;
76
:
596
–
603
.
46
Kissebah
AH
Alfarsi
S
Adams
PW
Seed
M
Folkard
J
Wynn
V.
Transport kinetics of plasma free fatty acid, very low density lipoprotein triglycerides and apoprotein in patients with endogenous hypertriglycerideaemia
.
Atherosclerosis
1976
;
24
:
199
–
218
.
The first paper demonstrating an increased free fatty acid flux linked to increased VLDL triglyceride secretion in patients with hypertriglyceridemia
.
47
Franklin
B
Ginsberg
H
Hague
WU
Ginsberg-Fellner
F.
Very low density lipoprotein metabolism in lipoatrophic diabetes
.
Metabolism
1984
;
33
:
814
–
819
.
48
Howard
BV
Abbott
WF
Beltz
F
Harper
IT
Fields
RM
Grundy
SM
et al.
Integrated study of low density lipoprotein metabolism and very low density lipoprotein in non-insulin-dependent diabetes
.
Metabolism
1987
;
36
:
870
–
877
.
49
Taskinen
M-R
Beltz
WF
Harper
I
Fields
RM
Schonfeld
G
Grundy
SM
et al.
The effects of NIDDM on very-low-density lipoprotein triglyceride and apolipoprotein B metabolism: studies before and after sulfonylurea therapy
.
Diabetes
1986
;
35
:
1268
–
1277
.
50
Olofsson
SO
Bjursell
G
Bostrom
K
Carlsson
P
Elovson
J
Protter
AA
et al.
Apolipoprotein B: structure, biosynthesis and role in the lipoprotein assembly process
.
Atherosclerosis
1987
;
68
:
1
–
17
.
51
Dixon
JL
Ginsberg
HN.
Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: information obtained from cultured liver cells
.
J Lipid Res
1993
;
34
:
167
–
179
.
A complete review of the regulation of the hepatic assembly and secretion of apoB-containing lipoproteins. In particular, the post-transcriptional regulation of apoB secretion is detailed
.
52
Pullinger
CR
North
JD
Teng
B-B
Rifici
VA
de Brito
AE Ronhild
Scott
J.
The apolipoprotein B gene is constitutively expressed in HepG2 cells: regulation of secretion by oleic acid, albumin, and insulin, and measurement of the mRNA half-life
.
J Lipid Res
1989
;
30
:
1065
–
1076
.
53
Moberly
JB
Cole
TG
Alpers
DH
Schonfeld
G.
Oleic acid stimulation of apolipoprtein B secretion from HepG2 and Caco-2 cells occurs post-transcriptionally
.
Biochim Biophys Acta
1990
;
1042
:
70
–
80
.
54
Dashti
N
Williams
DL
Alaupovic
P.
Effects of oleate and insulin on the production rates and cellular mRNA concentrations of apolipoproteins in HepG2 cells
.
J Lipid Res
1989
;
30
:
1365
–
1373
.
55
Segrest
JP
Jones
MK
Mishra
VK
Anantharamaiah
GM
Garber
DW.
ApoB-100 has a pentapartite structure composed of three amphipathic alpha-helical domains alternating with two amphipathic beta-strand domains. Detection by the computer program LOCATE
.
Arterioscler Thromb
1994
;
14
:
1674
–
1685
.
56
Yang
C-Y
Gu
Z
Weng
SA
Kim
TW
Chen
SH
Pownall
HJ
et al.
Structure of apolipoprotein B-100 of human low density lipoproteins
.
Arteriosclerosis
1989
;
9
:
96
–
108
.
57
Schekman
R.
Polypeptide translocation: a pretty picture is worth a thousand words
.
Cell
1996
;
87
:
593
–
595
.
58
Borén
J
Wettesten
M
Sjöberg
A
Thorlin
T
Bondjers
G
Wiklund
O
et al.
The assembly and secretion of ApoB 100 containing lipoproteins in Hep G2 cells. Evidence for different sites for protein synthesis and lipoprotein assembly
.
J Biol Chem
1990
;
265
:
10556
–
10564
.
59
Dixon
JL
Chattapadhyay
R
Huima
T
Redman
CM
Banerjee
D.
Biosynthesis of lipoprotein: location of nascent apoAI and apoB in the rough endoplasmic reticulum of chicken hepatocytes
.
J Cell Biol
1992
;
117
:
1161
–
1169
.
60
Davis
RA
Thrift
RN
Wu
CC
Howell
KE.
Apolipoproteih B is both integrated into and translocated across the endoplasmic reticulum membrane. Evidence for two functionally distinct pools
.
J Biol Chem
1990
;
265
:
10005
–
10011
.
61
Furukawa
S
Sakata
N
Ginsberg
HN
Dixon
JL
Studies of the sites of intracellular degradation of apolipoprotein B in Hep G2 cells
.
J. Biol Chem
1992
;
267
:
22630
–
22638
.
62
Yeung
SJ
Chen
SH
Chan
L.
Ubiquitin-proteasome pathway mediates intracellular degradation of apolipoprotein B
.
Biochemistry
1996
;
35
:
13843
–
13848
.
The first paper showing that apoB was ubiquitinated and degraded by the proteasome (see ref [63] below)
.
63
Fisher
EA
Zhou
M
Mitchell
DM
Wu
X
Omura
S
Wang
H
et al.
The degradation of apolipoprotein B100 is mediated by the ubiquitin-proteasome pathway and involves heat shock protein 70
.
J Biol Chem
1997
;
272
:
20427
–
20434
.
64
Sparks
JD
Sparks
CE.
Insulin modulation of hepatic synthesis and secretion of apolipoprotein B by rat hepatocytes
.
J Biol Chem
1990
;
265
:
8854
–
8862
.
65
Sparks
JD
Sparks
CE.
Insulin regulation of triacylglycerol-rich lipoprotein synthesis and secretion
.
Biochim Biophys Acta
1994
;
1215
:
9
–
32
.
An excellent review of the regulation of apoB secretion by insulin
.
66
Sparks
CE
Phung
TL
Bolognino
M.
Insulin-mediated inhibition of apolipoprotein B secretion requires an intracellular trafficking event and phosphatidylinositol 3-kinase activation: studies with brefeldin A and wortmannin in primary cultures of rat hepatocytes
.
Biochem J
1996
;
313
:
567
–
574
.
67
Sparks
JD
Zolfaghari
R
Sparks
CE
Smith
HC
Fisher
EA.
Impaired hepatic apolipoprotein B and E translation in streptozotocin diabetic rats
.
J Clin Invest
1992
;
89
:
1418
–
1430
.
68
Duerden
JM
Gibbon
GF.
Restoration in vitro of normal rates of very-low-density lipoprotein triacylglycerol and apoprotein B secretion in hepatocyte cultures from diabetic rats
.
Biochem J
1993
;
294
:
167
–
171
.
69
Hollenbeck
CB
Chen
Y-D
Greenfield
MS
Lardinois
CK
Reaven
GM.
Reduced plasma high density lipoprotein-cholesterol concentrations need not increase when hyperglycemia is controlled with insulin in noninsulin-dependent diabetes mellitus
.
J Clin Endocrinol Metab
1986
;
62
:
605
–
608
.
70
Gordon
T
Castelli
WP
Hjortland
MC
Kannel
WB
Dawber
TR.
Diabetes blood lipids and the role of obesity in coronary heart disease risk for women. The Framingham study
.
Ann Int Med
1977
;
87
:
393
–
397
.
71
Uusitupa
M
Siitonen
O
Voutilainen
E
Aro
A
Hersio
K
Pyorala
K
et al.
Serum lipids and lipoproteins in newly diagnosed non-insulin-dependent (type II) diabetic patients with special reference to factors influencing HDL-cholesterol and triglyceride levels
.
Diabetes Care
1986
;
9
:
17
–
22
.
72
Laakso
M
Sarlund
H
Mykkanen
L.
Insulin resistance is associated with lipid and lipoprotein abnormalities in subjects with varying degrees of glucose tolerance
.
Arteriosclerosis
1990
;
10
:
223
–
231
.
73
Tall
AR.
Plasma lipid transfer proteins
.
J Lipid Res
1986
;
27
:
361
–
367
.
74
Bagdade
JD
Lane
JT
Subbaiah
PV
Otto
ME
Ritter
MC.
Accelerated cholesteryl ester transfer in noninsulin-dependent diabetes mellitus
.
Atherosclerosis
1993
;
104
:
69
–
77
.
75
Horowitz
BS
Goldberg
IJ
Merab
J
Vanni
T
Ramakrishnan
R
Ginsberg •
HN.
Increased plasma and renal clearance of an exchangeable pool of apolipoprotein A-I in subjects with low levels of high density lipoprotein cholesterol
.
J Clin Invest
1993
;
91
:
1743
–
1752
.
The first paper demonstrating that apo AI was dissociable from HDL isolated from patients with hypertriglyceridemia. This work provided a biophysical and physiologic basis for the increased fractional catabolism of apo AI in patients with a high triglyceride level
.
76
Lamarche
B
Uffelman
KD
Carpentier
A
Lewis
GF.
Triglyceride enrichment of HDL enhances in vivo metabolic clearance of HDL apo A-1 in healthy men
.
J Clin Invest
1999
;
103
:
1191
–
1199
.
77
Lamarche
B
Uffelman
KD
Steiner
G
Barrett
PH
Lewis
GF.
Analysis of particle size and lipid composition as determinants of the metabolic clearance of human high density lipoproteins in a rabbit model
.
J Lipid Res
1999
;
39
:
1162
–
1172
.
78
Jones
RJ
Owens
D
Brennan
C
Collins
PB
Johnson
A
Tomkin
GH.
Increased esterification of cholesterol and transfer of cholesteryl ester to apo B-containing lipoproteins in type 2 diabetes: relationship to serum lipoproteins A-I and A-II
.
Atherosclerosis
1999
;
119
:
151
–
157
.
79
Tan
KC
Cooper
MB
Ling
KL
Griffin
BA
Freeman
DJ
Packard
CJ
et al.
Fasting and posptrandial determinants for the occurrence of small dense LDL species in non-insulin-dependent diabetic patients with and without hypertriglyceridaemia: the involvement of insulin, insulin precursor species and insulin resistance
.
Atherosclerosis
1999
;
113
:
273
–
287
.
80
Falko
JM
O'Dorisio
TM
Cataland
S.
Improvement of high-density lipoprotein-cholesterol levels: ambulatory type I diabetics treated with the subcutaneous insulin pump
.
JAMA
1982
;
247
:
37
–
39
.
81
Harno
K
Nikkila
EA
Kuusi
T.
Plasma HDL-cholesterol and postheparin plasma hepatic endothelial lipase (HL) activity: relationship to obesity and non-insulin dependent diabetes (NIDDM)
.
Diabetes
1982
;
31
:
126
–
131
.
82
Eckel
RH
Albers
JJ
Cheung
MC
Wahl
PW
Lindgren
FT
Bierman
EL.
High-density lipoprotein composition in insulin-dependent diabetes mellitus
.
Diabetes
1981
;
30
:
132
–
138
.
83
Golay
A
Zech
L
Shi
M-Z.
High density lipoprotein (HDL) metabolism in noninsulin-dependent diabetes mellitus: measurement of HDL turnover using tritiated HDL
.
J Clin Endocrinol Metab
1987
;
65
:
512
–
518
.
84
Le
N-A
Gibson
JC
Ginsberg
HN.
Independent regulation of plasma apolipoprotein CII and CIII concentrations in very low density and high density lipoproteins: implications for the regulation of the catabolism of these lipoproteins
.
J Lipid Res
1988
;
29
:
669
–
677
.
85
Nicoll
A
Miller
NE
Lewis
B.
High density lipoportein metabolism
. In:
Advances in lipid research.
New York
:
Academic Press
,
1980
. pp.
53
–
106
.
86
Brinton
EA
Eisenberg
S
Breslow
JL.
Increased apo A-I and apo A-II fractional catabolic rate in patients with low high density lipoprotein-cholesterol levels with or without hypertriglyceridemia
.
J Clin Invest
1991
;
87
:
536
–
544
.
87
Kissebah
AH.
Low density lipoprotein metabolism in non-insulin-dependent diabetes mellitus
.
Diabetes Metab Rev
1987
;
3
:
619
–
651
.
A comprehensive review of LDL metabolism in diabetes
.
88
Howard
BV.
Lipoprotein metabolism in diabetes mellitus
.
J Lipid Res
1987
;
28
:
613
–
628
.
89
Suzuki
N
Oikawa
S
Hori
S
Fujii
Y
Sakuma
E
Kotake
H
et al.
Appearance of multidisperese low density lipoprotein and altered lipoprotein composition in non-insulin-dependent diabetes with type IIa hyperlipoproteinemia
.
Metabolism
1989
;
38
:
225
–
229
.
90
Feingold
KR
Grunfeld
C
Pang
M
Doerrler
W
Krauss
RM.
LDL subclass phenotypes and triglyceride metabolism in non-insulin-dependent diabetes
.
Arterioscler Thromb
1992
;
2
:
1496
–
1502
.
91
Reaven
GM
Chen
Y-D
Jeppesen
J
Maheux
P
Krauss
RM.
Insulin resistance and hyperinsulinemia in individuals with small, dense, low density lipoprotein particles
.
J Clin Invest
1993
;
92
:
141
–
146
.
92
Austin
MA
Selby
JV.
LDL subclass phenotypes and the risk factors of the insulin resistance syndrome
.
Int J Obes Relat Metab Disord
1995
;
19
:
S22
–
S26
.
93
Austin
MA
Mykkanen
L
Kuusisto
J
Edwards
KL
Nelson
C
Haffner
SM
et al.
Prospective study of small LDLs as a risk factor for non-insulin dependent diabetes mellitus in elderly men and women
.
Circulation
1995
;
92
:
1770
–
1778
.
94
Austin
MA
Breslow
JL
Hennekens
CH
Buring
JE
Krauss
RM.
Low density lipoprotein subclass patterns and risk of myocardial infarction
.
JAMA
1988
;
260
:
1917
–
1921
.
95
Austin
MA
King
MD
Vranizan
KM
Krauss
RM.
Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk
.
Circulation
1990
;
82
:
495
–
506
.
96
Austin
MA
Hokanson
JE.
Epidemiology of triglycerides, small dense low-density lipoprotein, and lipoprotein (a) as risk factors for coronary heart disease
.
Med Clin North Am
1994
;
78
:
99
–
115
.
97
Chait
A
Brazg
RL
Tribble
DL
Krauss
RM.
Suspectibility of small, dense, low-density, lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B
.
Am J Med
1993
;
94
:
350
–
356
.
98
de-Graaf
J
Hendriks
JC
Demacker
PN
Stalenhoef
AF.
Identification of multiple dense LDL subfractions with enhanced susceptibility to in vitro oxidation among hypertriglyceridemic subjects. Normalization after Clofibrate treatment
.
Arterioscler Thromb
1993
;
13
:
712
–
719
.
99
Chait
A
Bierman
EL
Albers
JJ.
Low density lipoprotein receptor activity in cultured human skin fibroblasts: mechanism of insulin-induced stimulation
.
J Clin Invest
1979
;
64
:
1309
–
1319
.
100
Streicher
R
Kotzka
J
Muller-Wieland
D
Siemeister
G
Munck
M
Avci
H
et al.
SREBP-1 mediates activation of the low density lipoprotein receptor promoter by insulin and insulin-like growth factor-I
.
J Biol Chem
1996
;
271
:
7128
–
7133
.
101
Brindley
DN
Salter
AM.
Hormonal regulation of the hepatic low density lipoprotein receptor and the catabolism of low density lipoproteins: relationship with the secretion of very low density lipoproteins
.
Prog Lipid Res
1991
;
30
:
349
–
360
.
102
Ginsberg
HN
Le
N-A
Gibson
JC.
Regulation of the production and catabolism of plasma low density lipoproteins in hypertriglyceridemic subjects. Effect of weight loss
.
J Clin Invest
1985
;
75
:
614
–
623
.
103
Bierman
EL
Atherogenesis in diabetes
.
Arterioscler Thromb
1999
;
12
:
647
–
656
.
104
Schneider
DJ
Sobel
BE.
Augmentation of synthesis of plasminogen activator inhibitor type 1 by insulin and insulin-like growth factor type I: implications for vascular disease in hyperinsulinemic states
.
Proc Natl Acad Sci USA
1999
;
88
:
9959
–
9963
.
105
Schneider
DJ
Nordt
TK
Sobel
BE.
Attenuated fibrinolysis and accelerated atherogenesis in type II diabetic patients
.
Diabetes
1999
;
42
:
1
–
7
.
106
Allison
BA
Nilsson
L
Karpe
F
Hamsten
A
Eriksson
P.
Effects of native, triglyceride-enriched, and oxidatively modified LDL on plasminogen activator inhibitor-1 expression in human endothelial cells. Arterioscler
Thromb Vasc Biol
1999
;
19
:
1354
–
1360
.
107
Eriksson
P
Nilsson
L
Karpe
F
Hamsten
A.
Very-low-density bull; lipoprotein response element in the promoter region of the human plasminogen activator inhibitor-1 gene implicated in the impaired fibrinolysis of hypertriglyceridemia
.
Arterioscler Thromb Vasc Biol
1999
;
18
:
20
–
26
.
In this work, the authors describe the effects of VLDL triglyceride on a specific component of the promoter for the PAI-1 gene
.
108
Byberg
L
Siegbahn
A
Berglund
L
McKeigue
P
Reneland
R
Lithell
H.
Plasminogen activator inhibitor-1 activity is independently related to both insulin sensitivity and serum triglycerides in 70-year-old men
.
Arterioscler Thromb Vasc Biol
1999
;
18
:
258
–
264
.
109
Calles-Escandon
J
Mirza
SA
Sobel
BE
Schneider
DJ.
Induction of hyperinsulinemia combined with hyperglycemia and hypertriglyceridemia increases plasminogen activator inhibitor 1 in blood in normal human subjects
.
Diabetes
1999
;
47
:
290
–
293
.
An intravenous infusion of glucose and intralipid results in an elevated level of PAI-1 in normal subjects
.
110
Sobel
BE.
Insulin resistance and thrombosis: a cardiologist's view
.
Am J Cardiol
1999
;
84
:
37J
–
41J
.
This content is only available as a PDF.
© 2000 European Society of Cardiology
Topic:
- atherosclerosis
- dyslipidemias
- obesity
- phenotype
- fibrinolytic agents
- low-density lipoproteins
- hypertension
- ldl cholesterol lipoproteins
- high density lipoprotein cholesterol
- triglycerides
- metabolic syndrome x
- insulin resistance
- hypertriglyceridemia
- diabetes mellitus
- thrombolytic therapy
- diabetes mellitus, type 2
- high density lipoproteins
- blood coagulation
- bodily secretions
- health personnel
- lipoproteins, vldl
- plasma
- plasminogen activator inhibitor 1
- tissue culture
- cholesterol ester transfer proteins
- atherothrombosis
- coagulation process
- lipoprotein metabolism
I agree to the terms and conditions. You must accept the terms and conditions.
Submit a comment
Name
Affiliations
Comment title
Comment
You have entered an invalid code
Thank you for submitting a comment on this article. Your comment will be reviewed and published at the journal's discretion. Please check for further notifications by email.
Advertisement intended for healthcare professionals
Citations
Views
Altmetric
Metrics
Total Views 141
0 Pageviews
141 PDF Downloads
Since 1/1/2021
Month: | Total Views: |
---|---|
January 2021 | 2 |
February 2021 | 9 |
March 2021 | 4 |
April 2021 | 2 |
May 2021 | 2 |
June 2021 | 2 |
July 2021 | 4 |
August 2021 | 3 |
September 2021 | 3 |
October 2021 | 5 |
November 2021 | 2 |
December 2021 | 5 |
January 2022 | 7 |
February 2022 | 3 |
March 2022 | 4 |
April 2022 | 5 |
May 2022 | 1 |
June 2022 | 3 |
July 2022 | 2 |
September 2022 | 1 |
October 2022 | 5 |
November 2022 | 2 |
December 2022 | 8 |
January 2023 | 2 |
February 2023 | 4 |
March 2023 | 1 |
April 2023 | 2 |
May 2023 | 2 |
June 2023 | 2 |
August 2023 | 3 |
October 2023 | 2 |
November 2023 | 1 |
December 2023 | 7 |
January 2024 | 2 |
February 2024 | 1 |
March 2024 | 5 |
April 2024 | 3 |
May 2024 | 2 |
June 2024 | 3 |
July 2024 | 2 |
August 2024 | 3 |
September 2024 | 4 |
October 2024 | 5 |
November 2024 | 1 |
×
Email alerts
Related articles in PubMed
Citing articles via
More from Oxford Academic
Advertisement intended for healthcare professionals