Reduced CD4 T cell activation and in vitro susceptibility to HIV-1 infection in exposed uninfected Central Africans (original) (raw)

Retrovirology volume 3, Article number: 35 (2006)Cite this article

Abstract

Background

Environmentally driven immune activation was suggested to contribute to high rates of HIV-1 infection in Africa. We report here a study of immune activation markers and susceptibility to HIV-1 infection in vitro of forty-five highly exposed uninfected partners (EUs) of HIV-1 infected individuals in Central African Republic, in comparison with forty-four low-risk blood donors (UCs).

Results

Analysis of T lymphocyte subsets and activation markers in whole blood showed that the absolute values and the percentage of HLA-DR+CD4 T cells and of CCR5+CD4 T cells were lower in the EUs than in the UCs (p = 0.0001). Mutations in the CCR5 coding region were not found in either group. Susceptibility to in vitro infection of unstimulated peripheral blood mononuclear cells, prior of PHA activation, was decreased in EUs compared to UCs, either using a CXCR4-tropic or a CCR5-tropic HIV-1 strain (p = 0.02 and p = 0.05, respectively). Levels of MIP-1β, but not of MIP-1α or RANTES, in the supernatants of PHA-activated PBMC, were higher in the EUs than in the UCs (p = 0.007).

Conclusion

We found low levels of CD4 T cell activation and reduced PBMC susceptibility to HIV-1 infection in Central African EUs, indicating that both may contribute to the resistance to HIV-1 infection.

Background

Central African Republic (CAR) has a high prevalence rate of HIV-1 infection estimated at 18% among pregnant women [1]. The primary route of transmission is heterosexual. High rates of infection in HIV-1-infected individuals in Africa have been suggested to be related to immune hyperactivation driven by environmental factors, including high exposure to infectious agents and poor hygienic conditions [2]. Indeed, higher levels of CD4 and CD8 T cell activation have been reported in HIV-1 infected Africans in comparison with European populations [3]. In particular, HLA-DR expression on CD4 T cells was correlated with CD4 T cell count, viral load and coinfections [4]. Successful antiretroviral therapy was reported to decrease the levels of T cell activation markers, with a stronger effect on CD8 than on CD4 T cell activation [4, 5]. A pattern of immune activation, including an increase of activated T cell subsets and of the HIV-1 CCR5 co-receptor expression, has been reported not only in HIV-infected but also in HIV-uninfected African populations [69]. Interestingly, peripheral blood mononuclear cells (PBMC) from individuals with a chronic immune activation exhibited higher susceptibility to HIV-1 infection in vitro [10].

In spite of the spreading of HIV-epidemic in CAR, a consistent proportion of Central Africans who have been persistently exposed for several years to infection through unprotected sexual relationships with HIV-1 infected partners remained seronegative (Bégaud E. et al., unpublished data). Most studies on correlates of protection against HIV-1 infection in seronegative exposed individuals in other African countries were conducted on cohorts of commercial sex workers (CSW) whereas only a few studies concerned seronegative partners in serodiscordants couples [1118]. In these studies, HIV-1-specific helper and cytotoxic T cell responses have been detected in a significant proportion of exposed seronegative individuals [1923]. HIV-1-specific mucosal IgA were also detected in persistently negative Kenyan CSW and were shown to be capable of in vitro neutralization of HIV-1 [24, 25]. The question of whether these specific immune responses exert a protective role or they reflect exposure to HIV-1 is, however, still debated [2628]. Other immunological or genetic factors potentially related to the resistance have also been addressed in exposed seronegative African individuals but no clear protective mechanisms emerged from these studies [12, 13, 2931]. Genetic polymorphism in the CCR5 gene, such as the CCR5-Δ32 mutation, which was associated to the resistance to HIV-1 infection in Caucasian populations, has not been found in Africans [32].

We studied a group of exposed seronegative partners of HIV-1 infected individuals in Bangui with a long history of leading a common life and practicing unprotected sexual relations. Considering the background of immune activation reported in African populations, we asked whether differences in the levels of CD4 T cell activation and in the capacity to replicate HIV-1 in vitro could be related to the apparent resistance to infection in this group. From the studies conducted, we found lower levels of CD4 T cell activation and reduced in vitro susceptibility to HIV-1 infection in exposed seronegative individuals than in low-risk Central African blood donors.

Results

Characteristics of study population

Forty-five EU partners of HIV-1 infected individuals were included in the study. Median common life with unprotected sex relations was estimated to be 8 years (Table 1). At the time of enrollment, most HIV-1 infected partners were consulting for clinical symptoms related to HIV-1 infection. Median CD4 T cell count of HIV-1 infected partners was 73 cells/μl (IQR: 26-227) and median plasma viral load was 7.2 × 104 copies/ml (IQR: 1.3 × 104 – 14.8 × 104). Altogether, the clinical and virological characteristics of HIV-1 infected individuals suggested a long-term infection and a history of high risk exposure for their partners. There were no significant differences in potential risk factors for infection between the serodiscordant couples and 243 couples consulting at the Communitarian Hospital of Bangui in which both partners were seropositive (not shown). Among UCs, 73% were men and 27% women, with a median age of 24 years (18–40).

Table 1 Characteristics of the EUs n = 45

Full size table

The analysis of the CCR5 coding region polymorphism did not reveal the presence of variants of the CCR5 co-receptor, including the CCR5Δ32 mutation, among EUs or UCs.

Decreased expression of HLA-DR and CCR5 on CD4 T cells from EUs

In order to evaluate a potential role of immune activation and co-receptor expression in the susceptibility to HIV-1 infection, we examined lymphocyte subsets, expression of activation markers (HLA-DR and CD38) and HIV-1 co-receptors (CXCR4 and CCR5) on T cells in fresh whole blood from 25 EUs and 24 UCs. We did not find differences in CD4 or CD8 T cells, B and NK cells (absolute values and percentages) between the two groups (Table 2). However, the absolute value and the percentage of HLA-DR+CD4 T cells were significantly lower in the EUs than in the UCs (p = 0.0001) (Table 2). We also found lower absolute value and percentage of CCR5-expressing CD4 T cells in the EUs than in the UCs (p = 0.0001) (Table 2). CCR5 and HLA-DR expression on CD4 T cells were highly correlated (r = 0.80, p < 0.0001). Conversely, the absolute value and the percentage of CXCR4-expressing CD4 T cells did not differ between EUs and UCs. Furthermore, no differences were found in the expression of activation markers or of CXCR4 and CCR5 on CD8 T cells (Table 2).

Table 2 Lymphocyte subsets and activation markers in the EUs and UCs

Full size table

Reduced PBMC susceptibility to in vitro HIV-1 infection in EUs

We evaluated PBMC susceptibility to in vitro infection using two HIV-1 strains with different tropisms, HIV-1 NL-4.3 (X4) and HIV-1 BaL (R5). In order to evaluate the impact of the baseline activation of PBMC on their susceptibility to infection, we inoculated PBMC with the virus without any previous exogenous stimulation (infection before activation, BA) and then activated PBMC with PHA to allow efficient viral replication. In parallel, we also infected 3-days PHA activated PBMC (infection after activation, AA). The levels of p24 produced in infected cultures were expressed as percentages of those produced in parallel infections of standard PBMC (Fig. 1). In BA infectivity assays, we found lower p24 levels in PBMC from EUs than in PBMC from UCs after infection with either NL-4.3 (p = 0.02) or HIV-1 BaL (p = 0.05) (Fig 1A,B). In AA infectivity assays, no significant differences between EU and UC were found for both NL-4.3 and BaL infections, although p24 production in BaL infected PBMC were lower in the EUs than in the UCs (medians: 87 and 113 in EUs and UCs respectively, p = 0.12). We also performed infectivity assays using one CAR primary HIV-1 isolate on PBMC from 30 EUs and 35 UCs. BA infectivity assays with this CAR primary HIV-1 isolate indicate a lower virus production, evaluated by p24 levels in PBMC supernatants, in EUs than in UCs, as observed with BaL and NL-4.3 viruses. However, the difference did not reach statistical significance, because of the lower number of subjects analyzed (percentages of infection were 26 [0–124] and 49 [4.3–327] in EUs and UCs respectively (p = 0.14). In AA infectivity assays with the primary isolate, percentages of infection were 76 [7.9–392] and 117.3 [9.1–449.5] in EUs and UCs respectively.

Figure 1

figure 1

Susceptibility of peripheral blood mononuclear cells to in vitro HIV-1 infection. PBMCs (105 cells/well in 96-well microplates) from 45 EUs and 44 UCs were infected with HIV-1 NL-4.3 (A) or with HIV-1 BaL (B) in quadruplicate. Infections were performed either 24 h before PHA activation of PBMC (BA), or after 3-days PHA activation (AA). Standard PBMC were infected in parallel in each assay. HIV-1 replication was monitored by p24 antigen measure in culture supernatants. The p24 values of each individual PBMC infection were compared to the mean p24 value of standard PBMC. Results are expressed as the percent of the standard PBMC supernatant p24 at the peak of infection. Box-plots represent the 25th and the 75th percentiles and bars indicate the lowest and the highest values. The horizontal line in the boxes indicates the median. Comparisons between the groups were made using the non parametric Mann-Whitney U test.

Full size image

Figure 2

figure 2

β-chemokine levels in PBMC supernatants. PBMC culture supernatants were collected after a 3-day-PHA-activation and levels of MIP-1α/CCL3, MIP-1β/CCL4 and RANTES/CCL5 were measured by ELISA. Box-plots show the median values and percentiles of the levels of each β-chemokine expressed in ng/ml. Comparisons between the groups were made using the Mann-Whitney U test.

Full size image

β-chemokine secretion by PBMC

We found a higher level of MIP-1β/CCL4 production in PHA-activated PBMC supernatants from the EUs than from the UCs (medians: 43.7 and 28.9 ng/ml in EUs and UCs respectively, p = 0.007), whereas there were no significant differences in MIP-1α/CCL3 (medians: 20.9 and 19.2 in EUs and UCs) or RANTES/CCL5 (medians: 30.8 and 22.4 in EUs and UCs) between the two groups.

Discussion

Immune activation has been suggested to be critical in HIV-1 transmission and spreading in sub-Saharan Africa. We studied a group of Central African individuals who remained apparently uninfected despite repeated unprotected sex intercourses with their HIV-1-infected partners (EUs). We found a lower number and proportion of activation marker-expressing CD4 T lymphocytes in the EUs than in the low-risk controls. HLA-DR+CD4 T cell levels in UCs were indeed comparable to those reported for other African populations [13]. These data suggest lower availability of activated CD4 T cells for efficient HIV-1 replication in Central African EUs. Accordingly, PBMC from the EUs were less susceptible to both X4 and R5 HIV-1 strains in comparison with PBMC from the UCs, when infected before PHA-stimulation. In this condition, differences in target cell basal activation between the EUs and the UCs may eventually result in different capacity to support viral infection and replication. A higher number of activated CD4 T cells in UCs may allow a more rapid onset of HIV-1 replication, which would then promote a more efficient spread of infection upon PHA-activation. The loss of difference in HIV-1 replication levels between EUs and UCs when PBMC were activated before infection may be due to the strong polyclonal stimulation by PHA that may mask the initial differences in the susceptibility to HIV-1 infection. Still, the levels of HIV-1 Bal production were lower in the EUs PBMC, possibly due to higher production of MIP-1β. Contrasting results have been reported in this regard, depicting either lower or comparable susceptibility to HIV-1 infection of PHA-stimulated PBMC in different EU groups in comparison to control groups [12, 30, 3336]. However, whether discrepancies are linked to differences in experimental conditions or to differences between populations of study remains unclear

Consistent with the low CD4 T cell activation, EUs also showed a significantly lower expression of CCR5 on CD4 T lymphocytes. CCR5 surface expression has been shown to influence in vitro infectability with R5 HIV-1 [3741] and R5 variants are largely prevalent in infected individuals in Bangui [42]. Therefore, low levels of CCR5-expressing CD4 T cells may actually contribute to protect Central African EUs from HIV-1 transmission.

A recent study has also associated lower levels of CD4 T cell activation with resistance to HIV-1 in a group of homosexual EUs from the Amsterdam Cohort Studies [43]. In this study, lower percentages of CXCR4 – but not of CCR5-expressing CD4 T cells were found in EUs. However, lymphocyte phenotypes were determined on cryopreserved PBMCs and not in fresh blood, as we did, and the surface expression of CXCR4 and CCR5 may vary according to the nature and the conservation of samples [44] and Scott-Algara D. et al. unpublished data). A CXCR4 decreased expression in CD4 T cells from commercial sex workers in Côte d'Ivoire was associated with prolonged duration of commercial sex work and not with T cell activation [13]. It is possible that parameters associated with different sexual behaviours and/or environments are involved in the regulation of chemokine receptors expression.

Conclusion

In summary, we found low CD4 T cell activation and CCR5 expression as well as a reduced susceptibility to HIV-1 infection in Central African EU partners of HIV-1 infected individuals. This study did not allow further examination of immune activation or HIV-specific responses in other lymphoid compartments, including genital mucosa that is particularly relevant in sexual transmission of HIV-1. Previous studies of parameters of protection in EU CSW in Kenya revealed higher frequencies of CTL, CD4 T cells, IgA or elevated levels of β-chemokines in cervico-vaginal samples than in blood [16, 21, 24]. However, low levels of systemic CD4 T cell activation as well as a reduced susceptibility to HIV-1 infection documented here may reflect a general lower permissiveness to infection in EUs and may contribute to the protection against HIV-1 transmission, possibly together with other anti-viral responses not addressed here. Indeed, EUs are heterogeneous populations and different mechanisms, either innate or acquired, likely account for protection in different individuals [4547].

Materials and methods

Study population

Forty-five HIV-1-positive individuals and their HIV-1-negative heterosexual partners having a history of regular unprotected sexual relations for more than two years were enrolled at the Communitarian Hospital in Bangui. Seropositive patients were admitted in the hospital for medical care. Plasma HIV-1 RNA levels were quantified using the HIV-1 RNA 3.0 assay (Chiron, France). Partners of HIV-1 infected patients were tested negative for HIV-1 infection by Genelavia Mixt (Sanofi Diagnostics Pasteur) and Vironostica HIV Uni-form II (Organon Teknika) and by PCR on PBMC DNA for gag, pol, and env genes and will therefore be referred to as exposed uninfected individuals (EUs). All PCR primers used allow amplification of most HIV-1 isolates of the M group, including A subtype env that is predominant in CAR [48]. Enrolled participants gave their informed consent, completed a questionnaire regarding the frequency of sexual relations and other risk practices and received counseling and information about HIV-1 and safe sex. Forty-four Central African HIV-1 seronegative individuals with no risk factors for HIV-1 infection, such as sex with multiple partners or intravenous drug use, were recruited in Bangui as unexposed controls (UCs). This study was approved for ethical clearance by CAR Health Ministry and Health Authorities.

The political situation in CAR, including a coup in March 2003, caused movements of population including individuals enrolled in this study. Consequently, most of the analyses described below were performed on blood samples collected only at baseline visit.

CCR5 polymorphism analysis

CCR5 coding region polymorphism in EUs was analysed by denaturing high performance liquid chromatography and sequencing, as previously described [49]

Flow cytometry

Immunophenotyping analyses were performed on fresh whole blood samples from EUs or UCs at the Institut Pasteur of Bangui. CD4, CD8, NK and B cell populations were studied by a three-colour flow cytometry with standard lysis procedures. Labelled cells were analysed on a FACSCalibur flow cytometre (Becton Dickinson, Paris, France) (10000 events in lymphocyte gate). Monoclonal antibodies were acquired from Becton Dickinson.

Infectivity assays

Peripheral blood mononuclear cells (PBMCs) were prepared from blood samples collected on EDTA by centrifugation on Ficoll-Paque Plus (Amersham Bioscience, Uppsala, Sweden) and cryopreserved in fetal calf serum (FCS, Life Technologies) – 10 % dimethyl sulphoxide (Sigma, Irvine, UK). Susceptibility of PBMC to HIV-1 infection was determined by using the CCR4-tropic (X4) NL-4.3 HIV-1 or the CCR5-tropic (R5) BaL HIV-1 strains. In some experiments we also used a primary R5/(X4) isolate, HIV-1 73Mcd, from one CAR HIV-1-infected partner of an EU. To reduce inter-experimental variability bias, we included a same reference stock of PBMC from a HIV- blood donor used as standard in each assay and designated thereafter "standard PBMC". Viral inoculums able to consistently infect standard PBMCs were determined in preliminary assays. For each individual, PBMCs (105 cells/well in 96-well microplates) were infected in quadruplicate either 24 h before being activated with PHA (1 μg/ml) for 3 days (infection before activation: BA), or after 3-days activation with PHA (infection after activation: AA). PBMCs were then cultured in RPMI 1640 medium containing 10% FCS, 1% penicillin-streptomycin-neomycin, 1% glutamine and 100 U.I. of IL2 (Proleukin; Chiron, France) and HIV-1 replication was monitored by p24 antigen quantification in culture supernatants (HIV-1 p24 Antigen Assay, Coulter, France). The p24 value of standard PBMCs at their peak of infection (day 10–13) was considered to be 100 % for each infectivity assay. The p24 values of each individual PBMC infection were compared and normalised to the mean p24 value of the standard PBMC. Infectivity assays were performed in the L3 laboratory of the Institut Pasteur of Bangui.

β-chemokine production

β-chemokine (MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5) levels in PHA-activated PBMC supernatants were measured using commercial ELISA kits according to the manufacturer's instructions (Quantikine R&D Systems, Oxon, UK).

Statistical analysis

Statistical analysis was performed by using the STATA 8.0 statistical package (Stata Corporation, College Station, Texas, USA). Continuous variables were compared between the groups using the non-parametric Mann-Whitney U test. A Bonferroni correction was applied to the level of significance of statistical tests for comparing lymphocyte phenotypes between EU and controls due to the large number of tests performed in this analysis. Based on 13 comparisons of phenotypes, the level of significance was set at 0.05/13 = 0.004. Spearman rank correlation coefficients were computed to assess the strength of the association between two continuous variables.

References

  1. Matsika-Claquin MD, Massanga M, Menard D, Mazi-Nzapako J, Tenegbia JP, Mandeng MJ, Willybiro-Sacko J, Fontanet A, Talarmin A: HIV epidemic in Central African Republic: high prevalence rates in both rural and urban areas. J Med Virol. 2004, 72: 358-362. 10.1002/jmv.20001.
    Article PubMed Google Scholar
  2. Bentwich Z, Kalinkovich A, Weisman Z: Immune activation is a dominant factor in the pathogenesis of African AIDS. Immunology Today. 1995, 16: 187-191. 10.1016/0167-5699(95)80119-7.
    Article CAS PubMed Google Scholar
  3. Rizzardini G, Trabattoni D, Saresella M, Piconi S, Lukwiya M, Declich S, Fabiani M, Ferrante P, Clerici M: Immune activation in HIV-infected African individuals. Italian-Ugandan AIDS cooperation program. Aids. 1998, 12: 2387-2396. 10.1097/00002030-199818000-00007.
    Article CAS PubMed Google Scholar
  4. Eggena MP, Barugahare B, Okello M, Mutyala S, Jones N, Ma Y, Kityo C, Mugyenyi P, Cao H: T cell activation in HIV-seropositive Ugandans: differential associations with viral load, CD4+ T cell depletion, and coinfection. J Infect Dis. 2005, 191: 694-701. 10.1086/427516.
    Article PubMed Google Scholar
  5. Koblavi-Deme S, Maran M, Kabran N, Borget MY, Kalou M, Kestens L, Maurice C, Sassan-Morokro M, Ekpini ER, Roels TH, Chorba T, Nkengasong JN: Changes in levels of immune activation and reconstitution markers among HIV-1-infected Africans receiving antiretroviral therapy. Aids. 2003, 17 Suppl 3: S17-22.
    Article PubMed Google Scholar
  6. Clerici M, Butto S, Lukwiya M, Saresella M, Declich S, Trabattoni D, Pastori C, Piconi S, Fracasso C, Fabiani M, Ferrante P, Rizzardini G, Lopalco L: Immune activation in africa is environmentally-driven and is associated with upregulation of CCR5. Italian-Ugandan AIDS Project. Aids. 2000, 14: 2083-2092. 10.1097/00002030-200009290-00003.
    Article CAS PubMed Google Scholar
  7. Messele T, Abdulkadir M, Fontanet AL, Petros B, Hamann D, Koot M, Roos MT, Schellekens PT, Miedema F, Rinke de Wit TF: Reduced naive and increased activated CD4 and CD8 cells in healthy adult Ethiopians compared with their Dutch counterparts. Clin Exp Immunol. 1999, 115: 443-450. 10.1046/j.1365-2249.1999.00815.x.
    Article PubMed Central CAS PubMed Google Scholar
  8. Kemp K, Akanmori BD, Hviid L: West African donors have high percentages of activated cytokine producing T cells that are prone to apoptosis. Clin Exp Immunol. 2001, 126: 69-75. 10.1046/j.1365-2249.2001.01657.x.
    Article PubMed Central CAS PubMed Google Scholar
  9. Kassu A, Tsegaye A, Petros B, Wolday D, Hailu E, Tilahun T, Hailu B, Roos MT, Fontanet AL, Hamann D, De Wit TF: Distribution of lymphocyte subsets in healthy human immunodeficiency virus-negative adult Ethiopians from two geographic locales. Clin Diagn Lab Immunol. 2001, 8: 1171-1176. 10.1128/CDLI.8.6.1171-1176.2001.
    PubMed Central CAS PubMed Google Scholar
  10. Shapira-Nahor O, Kalinkovich A, Weisman Z, Greenberg Z, Nahmias J, Shapiro M, Panet A, Bentwich Z: Increased susceptibility to HIV-1 infection of peripheral blood mononuclear cells from chronically immune-activated individuals. Aids. 1998, 12: 1731-1733.
    CAS PubMed Google Scholar
  11. Fowke KR, Nagelkerke NJ, Kimani J, Simonsen JN, Anzala AO, Bwayo JJ, MacDonald KS, Ngugi EN, Plummer FA: Resistance to HIV-1 infection among persistently seronegative prostitutes in Nairobi, Kenya [see comments]. Lancet. 1996, 348: 1347-1351. 10.1016/S0140-6736(95)12269-2.
    Article CAS PubMed Google Scholar
  12. Messele T, Rinke de Wit TF, Brouwer M, Aklilu M, Birru T, Fontanet AL, Schuitemaker H, Hamann D: No difference in in vitro susceptibility to HIV type 1 between high-risk HIV-negative Ethiopian commercial sex workers and low-risk control subjects. AIDS Res Hum Retroviruses. 2001, 17: 433-441. 10.1089/088922201750102526.
    Article CAS PubMed Google Scholar
  13. Jennes W, Sawadogo S, Koblavi-Deme S, Vuylsteke B, Maurice C, Roels TH, Chorba T, Nkengasong JN, Kestens L: Cellular human immunodeficiency virus (HIV)-protective factors: a comparison of HIV-exposed seronegative female sex workers and female blood donors in Abidjan, Cote d'Ivoire. J Infect Dis. 2003, 187: 206-214. 10.1086/346049.
    Article PubMed Google Scholar
  14. Trivedi HN, Plummer FA, Anzala AO, Njagi E, Bwayo JJ, Ngugi EN, Embree JE, Hayglass KT: Resistance to HIV-1 infection among African sex workers is associated with global hyporesponsiveness in interleukin 4 production. Faseb J. 2001, 15: 1795-1797.
    CAS PubMed Google Scholar
  15. MacDonald KS, Fowke KR, Kimani J, Dunand VA, Nagelkerke NJ, Ball TB, Oyugi J, Njagi E, Gaur LK, Brunham RC, Wade J, Luscher MA, Krausa P, Rowland-Jones S, Ngugi E, Bwayo JJ, Plummer FA: Influence of HLA supertypes on susceptibility and resistance to human immunodeficiency virus type 1 infection. J Infect Dis. 2000, 181: 1581-1589. 10.1086/315472.
    Article CAS PubMed Google Scholar
  16. Iqbal SM, Ball TB, Kimani J, Kiama P, Thottingal P, Embree JE, Fowke KR, Plummer FA: Elevated T cell counts and RANTES expression in the genital mucosa of HIV-1-resistant Kenyan commercial sex workers. J Infect Dis. 2005, 192: 728-738. 10.1086/432482.
    Article CAS PubMed Google Scholar
  17. Kebba A, Kaleebu P, Rowland S, Ingram R, Whitworth J, Imami N, Gotch F: Distinct patterns of peripheral HIV-1-specific interferon- gamma responses in exposed HIV-1-seronegative individuals. J Infect Dis. 2004, 189: 1705-1713. 10.1086/383227.
    Article CAS PubMed Google Scholar
  18. Kebba A, Kaleebu P, Serwanga J, Rowland S, Yirrell D, Downing R, Gilmour J, Imami N, Gotch F, Whitworth J: HIV type 1 antigen-responsive CD4+ T-lymphocytes in exposed yet HIV Type 1 seronegative Ugandans. AIDS Res Hum Retroviruses. 2004, 20: 67-75. 10.1089/088922204322749512.
    Article CAS PubMed Google Scholar
  19. Rowland-Jones S, Sutton J, Ariyoshi K, Dong T, Gotch F, McAdam S, Whitby D, Sabally S, Gallimore A, Corrah T, Takiguchi M, Schultz T, McMichel A, Whittle H: HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nature Med. 1995, 1: 59-64. 10.1038/nm0195-59.
    Article PubMed Google Scholar
  20. Rowland-Jones SL, Dong T, Fowke KR, Kimani J, Krausa P, Newell H, Blanchard T, Ariyoshi K, Oyugi J, Ngugi E, Bwayo J, MacDonald KS, McMichael AJ, Plummer FA: Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV-resistant prostitutes in Nairobi [see comments]. Journal of Clinical Investigation. 1998, 102: 1758-1765.
    Article PubMed Central CAS PubMed Google Scholar
  21. Kaul R, Plummer FA, Kimani J, Dong T, Kiama P, Rostron T, Njagi E, MacDonald KS, Bwayo JJ, McMichael AJ, Rowland-Jones SL: HIV-1-specific mucosal CD8+ lymphocyte responses in the cervix of HIV-1-resistant prostitutes in Nairobi. J Immunol. 2000, 164: 1602-1611.
    Article CAS PubMed Google Scholar
  22. Fowke KR, Kaul R, Rosenthal KL, Oyugi J, Kimani J, Rutherford WJ, Nagelkerke NJ, Ball TB, Bwayo JJ, Simonsen JN, Shearer GM, Plummer FA: HIV-1-specific cellular immune responses among HIV-1-resistant sex workers. Immunol Cell Biol. 2000, 78: 586-595. 10.1046/j.1440-1711.2000.00944.x.
    Article CAS PubMed Google Scholar
  23. Jennes W, Vuylsteke B, Borget MY, Traore-Ettiegne V, Maurice C, Nolan M, Nkengasong JN, Kestens L: HIV-specific T helper responses and frequency of exposure among HIV-exposed seronegative female sex workers in Abidjan, Cote d'Ivoire. J Infect Dis. 2004, 189: 602-610. 10.1086/381454.
    Article PubMed Google Scholar
  24. Kaul R, Trabattoni D, Bwayo JJ, Arienti D, Zagliani A, Mwangi FM, Kariuki C, Ngugi EN, MacDonald KS, Ball TB, Clerici M, Plummer FA: HIV-1-specific mucosal IgA in a cohort of HIV-1-resistant Kenyan sex workers. Aids. 1999, 13: 23-29. 10.1097/00002030-199901140-00004.
    Article CAS PubMed Google Scholar
  25. Devito C, Hinkula J, Kaul R, Kimani J, Kiama P, Lopalco L, Barass C, Piconi S, Trabattoni D, Bwayo JJ, Plummer F, Clerici M, Broliden K: Cross-clade HIV-1-specific neutralizing IgA in mucosal and systemic compartments of HIV-1-exposed, persistently seronegative subjects. J Acquir Immune Defic Syndr. 2002, 30: 413-420.
    Article CAS PubMed Google Scholar
  26. Kaul R, Rowland-Jones SL, Kimani J, Dong T, Yang HB, Kiama P, Rostron T, Njagi E, Bwayo JJ, MacDonald KS, McMichael AJ, Plummer FA: Late seroconversion in HIV-resistant Nairobi prostitutes despite pre-existing HIV-specific CD8(+) responses. J Clin Invest. 2001, 107: 341-349.
    Article PubMed Central CAS PubMed Google Scholar
  27. Kaul R, Rutherford J, Rowland-Jones SL, Kimani J, Onyango JI, Fowke K, MacDonald K, Bwayo JJ, McMichael AJ, Plummer FA: HIV-1 Env-specific cytotoxic T-lymphocyte responses in exposed, uninfected Kenyan sex workers: a prospective analysis. Aids. 2004, 18: 2087-2089. 10.1097/00002030-200410210-00015.
    Article PubMed Google Scholar
  28. Lopalco L, Barassi C, Paolucci C, Breda D, Brunelli D, Nguyen M, Nouhin J, Luong TT, Truong LX, Clerici M, Calori G, Lazzarin A, Pancino G, Burastero SE: Predictive value of anti-cell and anti-human immunodeficiency virus (HIV) humoral responses in HIV-1-exposed seronegative cohorts of European and Asian origin. J Gen Virol. 2005, 86: 339-348. 10.1099/vir.0.80585-0.
    Article CAS PubMed Google Scholar
  29. Luscher MA, Choy G, Njagi E, Bwayo JJ, Anzala AO, Ndinya-Achola JO, Ball TB, Wade JA, Plummer FA, Barber BH, MacDonald KS: Naturally occurring IgG anti-HLA alloantibody does not correlate with HIV type 1 resistance in Nairobi prostitutes. AIDS Res Hum Retroviruses. 1998, 14: 109-115.
    Article CAS PubMed Google Scholar
  30. Fowke KR, Dong T, Rowland-Jones SL, Oyugi J, Rutherford WJ, Kimani J, Krausa P, Bwayo J, Simonsen JN, Shearer GM, Plummer FA: HIV type 1 resistance in Kenyan sex workers is not associated with altered cellular susceptibility to HIV type 1 infection or enhanced beta-chemokine production. AIDS Research & Human Retroviruses. 1998, 14: 1521-1530.
    Article CAS Google Scholar
  31. Jennes W, Evertse D, Borget MY, Vuylsteke B, Maurice C, Nkengasong JN, Kestens L: Suppressed cellular alloimmune responses in HIV-exposed seronegative female sex workers. Clin Exp Immunol. 2006, 143: 435-444. 10.1111/j.1365-2249.2006.03017.x.
    Article PubMed Central CAS PubMed Google Scholar
  32. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapouméroulie CJ, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smiyh RJ, Collman RG, Doms RW, Vassart G, Parmentier M: Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996, 382: 722-725. 10.1038/382722a0.
    Article CAS PubMed Google Scholar
  33. Paxton WA, Martin SR, Tse D, O'Brien TR, Skurnick J, VanDevanter NL, Padian N, Braun JF, Kotler DP, Wolinsky SM, Koup RA: Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nature Medicine. 1996, 2: 412-417. 10.1038/nm0496-412.
    Article CAS PubMed Google Scholar
  34. Truong TXL, Luong TT, Scott-Algara D, Versmisse P, David A, Perez-Bercoff D, Nguyen NV, Tran HK, Cao CT, Fontanet A, Follézou JY, Theodorou I, Barre-Sinoussi F, Pancino G: CD4+ cell and CD8+ cell-mediated resistance to HIV-1 infection in exposed uninfected intravascolar drug users in Vietnam. AIDS. 2003, 17: 1-10. 10.1097/00002030-200307040-00002.
    Article Google Scholar
  35. John R, Arango-Jaramillo S, Finny GJ, Schwartz DH: Risk associated HIV-1 cross-clade resistance of whole peripheral blood mononuclear cells from exposed uninfected individuals with wild-type CCR5. J Acquir Immune Defic Syndr. 2004, 35: 1-8.
    Article CAS PubMed Google Scholar
  36. Blaak H, van't Wout AB, Brouwer M, Cornelissen M, Kootstra NA, Albrecht-van Lent N, Keet RP, Goudsmit J, Coutinho RA, Schuitemaker H: Infectious cellular load in human immunodeficiency virus type 1 (HIV-1)-infected individuals and susceptibility of peripheral blood mononuclear cells from their exposed partners to non-syncytium-inducing HIV-1 as major determinants for HIV-1 transmission in homosexual couples. Journal of Virology. 1998, 72: 218-224.
    PubMed Central CAS PubMed Google Scholar
  37. Wu L, Paxton WA, Kassam N, Ruffing N, Rottman JB, Sullivan N, Choe H, Sodroski J, Newman W, Koup RA, Mackay CR: CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med. 1997, 185: 1681-1691. 10.1084/jem.185.9.1681.
    Article PubMed Central CAS PubMed Google Scholar
  38. Paxton WA, Liu R, Kang S, Wu L, Gingeras TR, Landau NR, Mackay CR, Koup RA: Reduced HIV-1 infectability of CD4+ lymphocytes from exposed-uninfected individuals: association with low expression of CCR5 and high production of beta-chemokines. Virology. 1998, 244: 66-73. 10.1006/viro.1998.9082.
    Article CAS PubMed Google Scholar
  39. Platt EJ, Wehrly K, Kuhmann SE, Chesebro B, Kabat D: Effects of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1. J Virol. 1998, 72: 2855-2864.
    PubMed Central CAS PubMed Google Scholar
  40. Blaak H, Ran LJ, Rientsma R, Schuitemaker H: Susceptibility of in vitro stimulated PBMC to infection with NSIHIV-1 is associated with levels of CCR5 expression and beta-chemokine production. Virology. 2000, 267: 237-246. 10.1006/viro.1999.0111.
    Article CAS PubMed Google Scholar
  41. Lin YL, Mettling C, Portales P, Reynes J, Clot J, Corbeau P: Cell surface CCR5 density determines the postentry efficiency of R5 HIV-1 infection. Proc Natl Acad Sci U S A. 2002, 99: 15590-15595. 10.1073/pnas.242134499.
    Article PubMed Central CAS PubMed Google Scholar
  42. Begaud E, Feindirongai G, Versmisse P, Ipero J, Leal J, Germani Y, Morvan J, Fleury H, Muller-Trutwin M, Barre-Sinoussi F, Pancino G: Broad spectrum of coreceptor usage and rapid disease progression in HIV-1-infected individuals from Central African Republic. AIDS Res Hum Retroviruses. 2003, 19: 551-560. 10.1089/088922203322230914.
    Article CAS PubMed Google Scholar
  43. Koning FA, Otto SA, Hazenberg MD, Dekker L, Prins M, Miedema F, Schuitemaker H: Low-Level CD4+ T Cell Activation Is Associated with Low Susceptibility to HIV-1 Infection. J Immunol. 2005, 175: 6117-6122.
    Article CAS PubMed Google Scholar
  44. Shalekoff S, Tiemessen CT: Duration of sample storage dramatically alters expression of the human immunodeficiency virus coreceptors CXCR4 and CCR5. Clin Diagn Lab Immunol. 2001, 8: 432-436. 10.1128/CDLI.8.2.432-436.2001.
    PubMed Central CAS PubMed Google Scholar
  45. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR: Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996, 86: 367-377. 10.1016/S0092-8674(00)80110-5.
    Article CAS PubMed Google Scholar
  46. Scott-Algara D, Truong LX, Versmisse P, David A, Luong TT, Nguyen NV, Theodorou I, Barre-Sinoussi F, Pancino G: Cutting edge: increased NK cell activity in HIV-1-exposed but uninfected Vietnamese intravascular drug users. J Immunol. 2003, 171: 5663-5667.
    Article CAS PubMed Google Scholar
  47. Kulkarni PS, Butera ST, Duerr AC: Resistance to HIV-1 infection: lessons learned from studies of highly exposed persistently seronegative (HEPS) individuals. AIDS Rev. 2003, 5: 87-103.
    PubMed Google Scholar
  48. Muller-Trutwin MC, Chaix ML, Letourneur F, Begaud E, Beaumont D, Deslandres A, You B, Morvan J, Mathiot C, Barre-Sinoussi F, Saragosti S: Increase of HIV-1 subtype A in Central African Republic. J Acquir Immune Defic Syndr. 1999, 21: 164-171.
    CAS PubMed Google Scholar
  49. Capoulade-Metay C, Ma L, Truong LX, Dudoit Y, Versmisse P, Nguyen NV, Nguyen M, Scott-Algara D, Barre-Sinoussi F, Debre P, Bismuth G, Pancino G, Theodorou I: New CCR5 variants associated with reduced HIV coreceptor function in southeast Asia. Aids. 2004, 18: 2243-2252. 10.1097/00002030-200411190-00004.
    Article CAS PubMed Google Scholar

Download references

Acknowledgements

This work was supported by grants from Sidaction and from the 'Programmes Transversaux de Recherche' of the Institut Pasteur. We thank Drs. P. Minssart, Ph. Gabrié and Ch. Mbolidi for their help in recruitment of study population, P. Pelembi and G. Yabeta for technical help and all the sérodiscordants couples and blood donors who accepted to participate in this study.

Author information

Authors and Affiliations

  1. Institut Pasteur, Bangui, CAR
    Evélyne Bégaud, Valéry Marechal, Julienne Ipero & Josianne Léal
  2. Unité de Recherche et d'Expertise Epidémiologie des Maladies Emergentes, Institut Pasteur, Paris, France
    Loïc Chartier & Arnaud Fontanet
  3. Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Paris, France
    Pierre Versmisse, Françoise Barré-Sinoussi, Daniel Scott-Algara & Gianfranco Pancino
  4. Service de Médecine Interne, Groupe Hospitalier Pitié-Salpétrière, Paris, France
    Guillaume Breton
  5. INSERM, Unité 543, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
    Corinne Capoulade-Metay
  6. Université Bordeaux 2, Bordeaux, France
    Hervé Fleury
  7. Centre de Ressources Biologiques de l'Institut Pasteur, Institut Pasteur, Paris, France
    Evélyne Bégaud
  8. Unité Postulante Interactions Moléculaires Flavivirus-Hôtes, France
    Valéry Marechal

Authors

  1. Evélyne Bégaud
    You can also search for this author inPubMed Google Scholar
  2. Loïc Chartier
    You can also search for this author inPubMed Google Scholar
  3. Valéry Marechal
    You can also search for this author inPubMed Google Scholar
  4. Julienne Ipero
    You can also search for this author inPubMed Google Scholar
  5. Josianne Léal
    You can also search for this author inPubMed Google Scholar
  6. Pierre Versmisse
    You can also search for this author inPubMed Google Scholar
  7. Guillaume Breton
    You can also search for this author inPubMed Google Scholar
  8. Arnaud Fontanet
    You can also search for this author inPubMed Google Scholar
  9. Corinne Capoulade-Metay
    You can also search for this author inPubMed Google Scholar
  10. Hervé Fleury
    You can also search for this author inPubMed Google Scholar
  11. Françoise Barré-Sinoussi
    You can also search for this author inPubMed Google Scholar
  12. Daniel Scott-Algara
    You can also search for this author inPubMed Google Scholar
  13. Gianfranco Pancino
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toGianfranco Pancino.

Additional information

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

EB, FB-S, DS-A and GP conceived of the study and contributed to its experimental design and coordination. GB and VM participated in the design and coordination of the study. LC and AF performed the statistical analysis. JI, JL and PV carried out the infectivity assays. CC-M performed CCR5 sequencing and analysis. HF contributed measures of plasma viral load. GP drafted the manuscript. All authors read and approved the final manuscript.

Authors’ original submitted files for images

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Bégaud, E., Chartier, L., Marechal, V. et al. Reduced CD4 T cell activation and in vitro susceptibility to HIV-1 infection in exposed uninfected Central Africans.Retrovirology 3, 35 (2006). https://doi.org/10.1186/1742-4690-3-35

Download citation

Keywords