Glucose Metabolic Rate in Normals and Schizophrenics During the Continuous Performance Test Assessed by Positron Emission Tomography | The British Journal of Psychiatry | Cambridge Core (original) (raw)

Abstract

Local cerebral uptake of glucose labelled with fluorine-18 was measured by positron emission tomography in 13 patients with schizophrenia and 37 right-handed volunteers. Patients received no medication for a minimum of 31 days and a mean of 30 weeks. The subjects were administered the labelled deoxyglucose just after the beginning of a 32-minute sequence of blurred numbers as visual stimuli for the Continuous Performance Test. In normal controls, task performance was associated with increases in glucose metabolic rate in the right frontal and right temporoparietal regions; occipital rates were unchanged. Patients with schizophrenia showed both absolutely and relatively reduced metabolic rates in the frontal cortex and in the temporoparietal regions compared with normal controls.

References

Andreasen, N. C. (1982) Negative symptoms in schizophrenia: definition and reliability. Archives of General Psychiatry, 39, 784–788.CrossRefGoogle ScholarPubMed

Arsarnow, R. F. (1982) Schizophrenia. In The Child at Risk (ed. Tartar, R.). New York: Oxford University Press.Google Scholar

Arsarnow, R. F. & MacCrimmon, D. J. (1978) Residual performance deficit in clinically remitted schizophrenics: a marker of schizophrenia. Journal of Abnormal Psychology, 87, 597–608.10.1037/0021-843X.87.6.597CrossRefGoogle Scholar

Bartko, J. (1990) The power of analysis: statistical perspectives. Part 1. Psychiatry Research (in press).Google Scholar

Buchsbaum, M. S. & Rieder, R. O. (1979) Biologic heterogeneity and psychiatric research: platelet MAO as a case study. Archives of General Psychiatry, 36, 1163–1169.CrossRefGoogle Scholar

Buchsbaum, M. S., Ingvar, D. H., Kessler, R., et al (1982) Cerebral glucography with positron emission tomography. Archives of General Psychiatry, 39, 251–259.CrossRefGoogle Scholar

Buchsbaum, M. S., Holcomb, H. H., Johnson, J., et al (1983) Cerebral metabolic consequences of electrical stimulation in normal individuals. Human Neurobiology, 2, 35–38.Google ScholarPubMed

Buchsbaum, M. S., & Haier, R. J. (1983) Psychopathology: biological approaches. Annual Review of Psychology, 34, 401–430.10.1146/annurev.ps.34.020183.002153CrossRefGoogle ScholarPubMed

Buchsbaum, M. S., DeLisi, L. E., Holcomb, H. H., et al (1984) Anteroposterior gradients in cerebral glucose use in schizophrenia and affective disorders. Archives of General Psychiatry, 41, 1159–1166.CrossRefGoogle ScholarPubMed

Buchsbaum, M. S., Awsare, S. V., Holcomb, H. H., et al (1986) Topographic differences between normals and schizophrenics: the N120 evoked potential component. Neuropsychobiology, 15, 1–6.CrossRefGoogle ScholarPubMed

Buchsbaum, M. S., & Haier, R. J. (1987) Functional and anatomical brain imaging: impact on schizophrenia research. Schizophrenia Bulletin, 13, 115–132.CrossRefGoogle ScholarPubMed

Cohen, R. M., Semple, W. E., Gross, M., et al (1987) Dysfunction in a prefrontal substrate of sustained attention in schizophrenia. Life Sciences, 40, 2031–2039.10.1016/0024-3205(87)90295-5CrossRefGoogle Scholar

Davies, D. R. & Parasuraman, R. (1982) The Psychology of Vigilance. London: Academic Press.Google Scholar

Davis, G. C., Buchsbaum, M. S. & Bunney, W. E. Jr (1979a) Research in endorphins and schizophrenia. Schizophrenia Bulletin, 5, 244–250.CrossRefGoogle ScholarPubMed

Davis, G. C., Buchsbaum, M. S. van Kammen, D. P., et al (1979b) Analgesia to pain stimuli in schizophrenics and its reversal by naltrexone. Psychiatry Research, 1, 61–69.CrossRefGoogle ScholarPubMed

Dixon, W. J. (1982) BMD Biomedical Computer Programs. Berkeley: University of California Press.Google Scholar

Early, T. S., Reiman, E. M., Raichle, M. E., et al (1987) Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proceedings of the National Academy of Sciences, 84, 561–563.CrossRefGoogle ScholarPubMed

Erlenmeyer-Kimling, L. & Cornblatt, B. (1978) Attentional measures in a study of children at high risk for schizophrenia. Journal of Psychiatric Research, 14, 93–98.10.1016/0022-3956(78)90011-0CrossRefGoogle Scholar

Farkas, T., Wolf, A. P., Jaeger, J., et al (1984) Regional brain glucose metabolism in chronic schizophrenia: a positron emission transaxial tomographic study. Archives of General Psychiatry, 41, 293–300.10.1001/archpsyc.1984.01790140083010CrossRefGoogle ScholarPubMed

Gur, R. E., Resnick, S. M., Alavi, A., et al (1987) Regional brain function in schizophrenia. Positron emission tomography study. Archives of General Psychiatry, 44, 119–125.CrossRefGoogle ScholarPubMed

Hellige, J. B. (1982) Visual laterality and hemisphere specialization: methodological and theoretical considerations. In Conditioning, Cognition, and Methodology: Contemporary Issues in Experimental Psychology. Hillsdale, New Jersey: Erlbaum.Google Scholar

Ingvar, D. H. (1979) Hyperfrontal distribution of the cerebral grey matter flow in resting wakefulness. Acta Neurologica Scandinavica, 60, 12–25.CrossRefGoogle ScholarPubMed

Ingvar, D. H. & Franzen, G. (1974) Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatrica Scandinavica, 50, 425–462.CrossRefGoogle ScholarPubMed

Ingvar, D. H., Rosen, I., Eriksson, M., et al (1976) Activation patterns induced in the dominant hemisphere by skin stimulation. In Sensory Functions of the Skin (ed. Zotterman, Y.), pp. 549–559. London: Pergamon Press.CrossRefGoogle Scholar

Jernigan, T. L., Sargent, T. III, Pfefferbaum, A., et at (1985) 18-Fluorodeoxyglucose PET in schizophrenia. Psychiatry Research, 16, 317–330.10.1016/0165-1781(85)90123-4CrossRefGoogle Scholar

Kling, A. S., Metter, E. J., Riege, W. H., et al (1986) Comparison of PET measurement of local brain glucose metabolism and CAT measurement of brain atrophy in chronic schizophrenia and depression. American Journal of Psychiatry, 143, 175–180.Google ScholarPubMed

Levin, S. (1984) Frontal lobe dysfunctions in schizophrenia – I. Eye movement impairments. Journal of Psychiatric Research, 18, 27–55.10.1016/0022-3956(84)90046-3CrossRefGoogle ScholarPubMed

Lukoff, D., Nuechterlein, K. H. & Ventura, J. (1986) Manual for expanded brief psychiatric rating scale (BPRS). Schizophrenia Bulletin, 12, 594–602.Google Scholar

Matsui, T. & Hirano, A. (1978) An Atlas of the Human Brain for Computerized Tomography. Tokyo: Igaku-Shoin.Google Scholar

Matthysse, S. (1986) The art of questioning oracles. McLean Hospital Journal, 11, 65–71.Google Scholar

Mesulam, M-M. (1985) Attention, confusional states, and neglect. In Principles of Behavioral Neurology (ed. Mesulam, M-M.). Philadelphia: F. A. Davis.Google Scholar

Mirsky, A. F. & Duncan, C. C. (1989) Attention impairment in human clinical disorders: schizophrenia and petit mal epilepsy. In Attention: Theory, Brain Functions and Clinical Applications (eds Sheer, D. E. & Pribram, K. H.). Hillsdale, New Jersey: Erlbaum.Google Scholar

Moscovitch, M. (1979) Information processing in the cerebral hemispheres. In Handbook of Behavioral Neurobiology, Vol 2: Neuropsychology (ed. Gazzaniga, M. S.). New York: Plenum.Google Scholar

Nuechterlein, K. H. (1983) Signal detection in vigilance tasks and behavioral attributes among offspring of schizophrenic mothers and among hyperactive children. Journal of Abnormal Psychology, 92, 4–28.CrossRefGoogle ScholarPubMed

Nuechterlein, K. H., Phipps-Yonas, S., Driscoll, R. M., et al (1982) The role of different components of attention in children vulnerable to schizophrenia. In Preventive Intervention in Schizophrenia: Are We Ready? (ed. Goldstein, M. J.). Washington, DC: US Government Printing Office.Google Scholar

Nuechterlein, K. H., Parasuraman, R. & Jiang, Q. (1983) Visual sustained attention: image degradation produces rapid decrement over time. Science, 220, 327–329.CrossRefGoogle ScholarPubMed

Overall, J. E. & Gorham, D. R. (1962) The brief psychiatric rating scale. Psychological Reports, 10, 799–812.10.2466/pr0.1962.10.3.799CrossRefGoogle Scholar

Orzack, M. & Kornetsky, C. (1966) Attention dysfunction in chronic schizophrenia. Archives of General Psychiatry, 14, 323–326.CrossRefGoogle ScholarPubMed

Orzack, M. & Kornetsky, C. (1971) Environmental and familial predictors of attention behavior in chronic schizophrenics. Journal of Psychiatric Research, 9, 21–29.CrossRefGoogle ScholarPubMed

Phelps, M. E., Huang, S. C., Hoffman, E. J., et al (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Annals of Neurology, 6, 371–388.CrossRefGoogle ScholarPubMed

Phelps, M. E., Mazziotta, J. C., Kuhl, D. E., et al (1981) Tomographic mapping of human cerebral metabolism: visual stimulation and deprivation. Neurology, 31, 517–529.CrossRefGoogle ScholarPubMed

Posner, M. I. & Presti, D. (1987) Selective attention and cognitive control. Trends in Neuroscience, 10, 12–17.CrossRefGoogle Scholar

Rutschmann, J., Cornblatt, G. & Erlenmeyer-Kimling, L. (1977) Sustained attention in children at risk for schizophrenia. Archives of General Psychiatry, 34, 571–575.CrossRefGoogle ScholarPubMed

Sergent, J. (1983) Role of the input in visual hemispheric asymmetries. Psychological Bulletin, 93, 481–512.10.1037/0033-2909.93.3.481CrossRefGoogle ScholarPubMed

Sheppard, G., Gruzelier, J., Manchanda, R., et al (1983) Positron emission tomographic scanning in predominantly never-treated acute schizophrenic patients. Lancet, ii, 1448–1452.10.1016/S0140-6736(83)90798-5CrossRefGoogle Scholar

Sokoloff, L. (1977) Relation between physiological function and energy metabolism in the central nervous system. Journal of Neurochemistry, 29, 13–26.CrossRefGoogle ScholarPubMed

Strandburg, R. J., Marsh, J. T., Brown, W. S., et al (1984) Event-related potential concomitants of information processing dysfunction in schizophrenic children. Electro-encephalography and Clinical Neurophysiology, 57, 236–253.10.1016/0013-4694(84)90125-1CrossRefGoogle ScholarPubMed

Tsubokawa, T., Katayama, Y., Ueno, Y., et al (1981) Evidence for involvement of the frontal cortex in pain-related cerebral events in cats: increase in local cerebral blood flow by noxious stimuli. Brain Research, 217, 179–185.CrossRefGoogle ScholarPubMed

Volkow, N. D., Wolf, A. P., van Gelder, P., et al (1987) Phenomenological correlates of metabolic activity in 18 patients with chronic schizophrenia. American Journal of Psychiatry, 144, 151–158.Google ScholarPubMed

Walker, E. (1981) Attentional and neuromotor functions of schizophrenics, schizoaffectives, and patients with other affective disorders. Archives of General Psychiatry, 38, 1355–1358.CrossRefGoogle ScholarPubMed

Walker, E. & Shaye, J. (1982) Familial schizophrenia: a predictor of neuromotor and attentional abnormalities in schizophrenia. Archives of General Psychiatry, 39, 1153–1156.CrossRefGoogle ScholarPubMed

Weinberger, D. R. (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660–669.CrossRefGoogle ScholarPubMed

Weinberger, D. R., Berman, K. F., & Zec, R. F. (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow evidence. Archives of General Psychiatry, 43, 114–124.CrossRefGoogle ScholarPubMed

Wiesel, F.-A., Blomqvist, G., Greitz, T., et al (1985) In Proceedings of the 4th World Congress of Biological Psychiatry. New York: Elsevier Science Publishing Co.Google Scholar

Wiesel, F.-A., Blomqvist, G., Greitz, T., et al (1987) In Proceedings of the 4th World Congress of Biological Psychiatry. New York: Elsevier Science Publishing Co.Google Scholar

Wing, J. K., Cooper, J. E., & Sartorius, N. (1974) Measurement and Classification of Psychiatric Symptoms. London: Cambridge University Press.Google Scholar

Wohlberg, G. W. & Kornetsky, C. (1973) Sustained attention in remitted schizophrenics. Archives of General Psychiatry, 28, 533–537.CrossRefGoogle ScholarPubMed

Wolkin, A., Jaeger, J., Brodie, J. D., et al (1985) Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography. American Journal of Psychiatry, 142, 564–571.Google ScholarPubMed