Contribution of Noncentrosomal Microtubules to Spindle Assembly in Drosophila Spermatocytes (original) (raw)

< Back to Article

Figure 1

Centriole Migration in Primary Spermatocytes

(A) Time-lapse series of confocal images from a wild-type primary spermatocyte expressing GFP-PACT (centrioles) and His2AvD–GFP (chromosomes). The centrioles (arrows) can be seen moving away from the plasma membrane (0) towards the nucleus (N) and then migrating diametrically apart as the chromatin condenses. The chromosomes are fully condensed at timepoint 121 min.

(B–D) The two centriole pairs (green) projected over the phase-contrast view (grey) can be seen close to the fenestrated NE and away from the plasma membrane (pm) in control cells (B), while they remain plasma membrane-bound in asp (C) and in colcemid-treated wild-type cells (D). In asp spermatocytes (C), the position of the membrane-bound centrioles correlates tightly with the pointed end of phase-dark protrusions (arrows) that are not present in colcemid-treated cells. These reflect the distribution of phase-contrast membranes known to overlap microtubules in these cells.

(E–J) XY projections (E–G) and their corresponding optical sections (H–J) of control (E and H), asp (F and I), colcemid-treated spermatocytes (G and J) expressing an endogenous GFP–α-tubulin confirm that the two major MTOCs in control cells are close to the nucleus, but remain near the plasma membrane in the two experimental conditions. MTOC activity in colcemid-treated spermatocytes was assayed following a 1-s pulse of 350 nm light to inactivate the drug, thus allowing microtubule regrowth. The yellow bar in the XY projections (E–G) marks the position of the corresponding XZ optical sections (H–J).

Figure 1

doi: https://doi.org/10.1371/journal.pbio.0020008.g001