Homeostatic Plasticity of Striatal Neurons Intrinsic Excitability following Dopamine Depletion (original) (raw)

< Back to Article

Figure 4

Dopamine depletion alters the A-type potassium current in MSN.

(A, B) Left column, Representative current traces obtained in each studied condition (control and dopamine depletion) and evoked by the voltage-clamp protocol shown on the top. Right column, A-type currents obtained from subtraction of currents traces of the left column (see text for details). Insets on the right column, Semilogarithmic plots of A-type current traces show that the current inactivation could be fit by a monoexponential function. Summary histograms of the mean current amplitude density (C), the inactivation time constant (τ) (D) and the total charge efflux (E) in untreated control and dopamine depleted MSN. These histograms illustrate the significant decreases of the inactivation time constant (τ) and total charge efflux induced by dopamine depletion. (Untreated control medium spiny neurons n = 8, dopamine (DA)-depleted medium spiny neurons n = 8; data represent mean ± SEM; *p<0.05, ***p<0.001).

Figure 4

doi: https://doi.org/10.1371/journal.pone.0006908.g004