Developmental Sex Differences in Nicotinic Currents of Prefrontal Layer VI Neurons in Mice and Rats (original) (raw)

< Back to Article

Figure 1

Developmental sex difference in nicotinic currents in layer VI neurons of prefrontal cortex.

(A) Examples of voltage clamp traces from a P19 male and a P27 female showing nicotinic inward currents during bath application of acetylcholine (1 mM, 10 s). Line denotes acetylcholine application. Both males and females have reproducible, non-desensitizing currents elicited by bath-applied acetylcholine, when given five-minute washout duration. (B) Bar chart summarizing the mean amplitude of the peak inward current elicited by acetylcholine in FVB male (left panel) and female (right panel) mice in layer VI across postnatal weeks two to five. In males, there is a significant developmental effect where the mean nicotinic current during postnatal weeks three and four are significantly higher than the mean inward current during postnatal weeks two and five (* P<0.05). In females, there is also a significant developmental effect where the mean nicotinic current during postnatal week three is significantly higher than the mean inward current during postnatal weeks two and five (* P<0.05). (C) Bar graph displays the sex difference in the average inward current elicited by nicotinic receptor stimulation by acetylcholine (1 mM, 30 s). Males (black bars) have significantly greater currents than females (open bars) during postnatal weeks three and four (** P<0.01). All recordings are performed in the presence of atropine (200 nM) to block muscarinic receptors and MLA (10 nM) to block α7 nicotinic receptors.

Figure 1

doi: https://doi.org/10.1371/journal.pone.0009261.g001