Human Embryonic and Fetal Mesenchymal Stem Cells Differentiate toward Three Different Cardiac Lineages in Contrast to Their Adult Counterparts (original) (raw)
Figure 2
Immunocytological assessment of cardiomyogenic differentiation of different types of hMSCs after 10 days of co-culture with nrCMCs.
(A1–B3) A fraction of eGFP-labeled, human-specific lamin A/C positive hESC-MSCs and fetal amniotic, BM and UC hMSCs expressed α-actinin (indicated as α-act), while (C1–C2) adult BM and adipose hMSCs did not. (D) eGFP-labeled human fetal skin fibroblasts (hSFBs; negative control cells) in co-culture with nrCMCs did not stain positive for α-actinin. (E) Quantitative analysis of the cardiomyogenic differentiation of different types of hMSCs. The graph is based on a minimum of 1,200 cells analyzed from 4 separate isolations per hMSC type. #P<0.001 vs all fetal and adult hMSC types; *P<0.05 vs adult hMSCs; ND is not detected. (F) Intracellular electrophysiological measurements in fetal (amniotic) and adult (adipose) hMSCs at day 10 of co-culture with nrCMCs and after pharmacological uncoupling of gap junctions. Intrinsic action potentials could be recorded from eGFP-labeled fetal cells, while adult hMSCs showed only steady membrane potentials.