Nuclear Entry of Hepatitis B Virus Capsids Involves Disintegration to Protein Dimers followed by Nuclear Reassociation to Capsids (original) (raw)
Figure 4
Characterization of anti capsid antibodies using capsid subassemblies.
A. Immune reactivity of capsids and subassemblies using DAKO Ab (left panel) and FAb3105 (right panel). The graphs show the reactivity normalized to the protein amount (arbitrary units). The fractions are given below the x-axes. The reactivity on the y-axes is depicted in arbitrary units. The panels below are dot blots using peaks A-C from Fig. 3B(DAKO Ab) or from Fig. 3D(Fab3105). The graphs show that the polyclonal DAKO Ab reacts with capsids and fraction B9, while the FAb3105 reacted with all fractions equally well. B. Interference between DAKO Ab and FAb3105 binding to rC separation on native agarose gel electrophoresis. 1. 1st Ab: DAKO Ab, 2nd Ab: horse radish peroxidase-labelled (POD) anti rabbit. 2. 1st Ab: FAb3105, 2nd Ab: POD anti mouse. 3. 1st Ab: DAKO Ab followed by FAb3105, 2nd Ab: POD anti mouse. 4. 1st Ab FAb3105 followed by DAKO Ab, 2nd Ab: POD anti rabbit. The blots show that preincubation with DAKO Ab totally prevented capsid interaction with FAb3105 while preincubation with FAb3105 inhibited DAKO Ab reactivity significantly but not completely.