Implication of APP secretases in notch signaling (original) (raw)
References
Artavanis-Tsakonas S., Rand M. D., and Lake R. J. (1999) Notch signaling: cell fate control and signal integration in development. Science284, 770–776. ArticlePubMedCAS Google Scholar
Baumeister R., Leimer U., Zweckbronner I., Jakubek C., Grunberg J., and Haass C. (1997) Human presenilin-1, but not familial Alzheimer’s disease (FAD) mutants, facilitate Caenorhabditis elegans Notch signalling independently of proteolytic processing. Genes Funct.1, 149–159. PubMedCAS Google Scholar
Berechid B. E., Thinakaran G., Wong P. C., Sisodia S. S., and Nye J. S. (1999) Lack of requirement for presenilin1 in Notch1 signaling. Curr. Biol.9, 1493–1496. ArticlePubMedCAS Google Scholar
Blaumueller C. M., Qi H., Zagouras P., and Artavanis-Tsakonas S. (1997) Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell90, 281–291. ArticlePubMedCAS Google Scholar
Borchelt D. R., Ratovitski T., van Lare J., Lee M. K., Gonzales V., Jenkins N. A., et al. (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron.19, 939–945. ArticlePubMedCAS Google Scholar
Brou C., Logeat F., Gupta N., Bessia C., LeBail O., Doedens J. R., et al. (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrinmetalloprotease TACE. Mol. Cell.5, 207–216. ArticlePubMedCAS Google Scholar
Brown M. S., Ye J., Rawson R. B., and Goldstein J. L. (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell100, 391–398. ArticlePubMedCAS Google Scholar
Bulman M. P., Kusumi K., Frayling T. M., McKeown C., Garrett C., Lander E. S., et al. (2000) Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat. Genet.24, 438–441. ArticlePubMedCAS Google Scholar
Bush G., diSibio G., Miyamoto A., Denault J. B., Leduc R., and Weinmaster G. (2001) Ligand-induced signaling in the absence of furin processing of Notch1. Dev. Biol.229, 494–502. ArticlePubMedCAS Google Scholar
Buxbaum, J. D., et al. (1998) Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273, 27,765–27,767. ArticleCAS Google Scholar
Cai H., Wang Y., McCarthy D., Wen H., Borchelt D. R., Price D. L., and Wong P. C. (2001) BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat. Neurosci.4, 233–234. ArticlePubMedCAS Google Scholar
Capell A., Grunberg J., Pesold B., Diehlmann A., Citron M., Nixon R., et al. (1998) The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100–150-kDa molecular mass complex. J. Biol. Chem.273, 3205–3211. ArticlePubMedCAS Google Scholar
Citron M., Westaway D., Xia W., Carlson G., Diehl T., Levesque G., et al. (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat. Med.3, 67–72. ArticlePubMedCAS Google Scholar
Conlon R. A., Reaume A. G., and Rossant J. (1995) Notch1 is required for the coordinate segmentation of somites. Development121, 1533–1545. PubMedCAS Google Scholar
De Strooper B. and Annaert W. (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J. Cell Sci.113, 1857–1870. PubMed Google Scholar
De Strooper B. and Annaert W. (2001) Where Notch and Wnt signaling meet. The presenilin hub. J. Cell Biol.152, F17-F20. ArticlePubMed Google Scholar
De Strooper B., Annaert W., Cupers P., Saftig P., Craessaerts K., Mumm J. S., et al. (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature398, 518–522. ArticlePubMedCAS Google Scholar
De Strooper B., Saftig P., Craessaerts K., Vanderstichele H., Guhde G., Annaert W., et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature391, 387–390. ArticlePubMedCAS Google Scholar
Dominguez D. I., De Strooper B., and Annaert W. (2001) Secretases as therapeutic targets for the treatment of Alzheimer’s disease. Amyloid8, 124–142. PubMedCAS Google Scholar
Donoviel D. B., Hadjantonakis A. K., Ikeda M., Zheng H., Hyslop P. S., and Bernstein A. (1999) Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev.13, 2801–2810. ArticlePubMedCAS Google Scholar
Duff K., Eckman C., Zehr C., Yu X., Prada C. M., Pereztur J., et al. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature383, 710–713. ArticlePubMedCAS Google Scholar
Ellisen L. W., Bird J., West D. C., Soreng A. L., Reynolds T. C., Smith S. D., and Sklar J. (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell66, 649–661. ArticlePubMedCAS Google Scholar
Eldadah Z. A., Hamosh A., Biery N. J., Montgomery R. A., Duke M., Elkins R., and Dietz H. C. (2001) Familial Tetralogy of Fallot caused by mutation in the jagged1 gene. Hum. Mol. Genet.10, 163–169. ArticlePubMedCAS Google Scholar
Elser W. P., Kimberly W. T., Ostaszewski B. L., Diehl T. S., Moore C. L., Tsai J. Y., et al. (2000) Transition-state analogue inhibitors of gamma-secretase bind directly to presenilin-1. Nat. Cell Biol.2, 428–434. ArticleCAS Google Scholar
Fryxell K. J., Soderlund M., and Jordan T. V. (2001) An animal model for the molecular genetics of CADASIL. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke32, 6–11. PubMedCAS Google Scholar
Hadland B. K., Manley N. R., Su D., Longmore G. D., Moore C. L., Wolfe M. S., et al. (2001) Gammasecretase inhibitors repress thymocyte development. Proc. Natl. Acad. Sci. USA98, 7487–7491. ArticlePubMedCAS Google Scholar
Hartmann D., De Strooper B., and Saftig P. (1999) Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr. Biol.9, 719–727. ArticlePubMedCAS Google Scholar
Heber S., Herms J., Gajic V., Hainfellner J., Aguzzi A., Rulicke T., et al. (2000) Mice with combined gene knockouts reveal essential and partially redundant functions of amyloid precursor protein family members. J. Neurosci.20, 7951–7963. PubMedCAS Google Scholar
Herreman A., Hartmann D., Annaert W., Saftig P., Craessaerts K., Serneels L., et al. (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc. Natl. Acad. Sci. USA96, 11,872–11,877. ArticleCAS Google Scholar
Herreman A., Serneels L., Annaert W., Collen D., Schoonjans L., and De Strooper B. (2000) Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nat. Cell Biol.2, 461–462. ArticlePubMedCAS Google Scholar
Joutel A., Vahedi K., Corpechot C., Troesch A., Chabriat H., Vayssiere C., et al. (1997) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet350, 1511–1515. ArticlePubMedCAS Google Scholar
Joutel A., Andreux F., Gaulis S., Domenga V., Cecillon M., Battail N., et al. (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J. Clin. Invest.105, 597–605. ArticlePubMedCAS Google Scholar
Kiernan A. E., Ahituv N., Fuchs H., Balling R., Avraham K. B., Steel K. P., and Hrabe de Angelis M. (2001) The Notch ligand Jagged1 is required for inner ear sensory development. Proc. Natl. Acad. Sci. USA98, 3873–3878. ArticlePubMedCAS Google Scholar
Koike H. S., Koike H., Tomioka S., Sorimachi H., Saido T. C., Maruyama K., et al. (1999) Membrane-anchored metalloprotease MDC9 has an alpha-secretase activity responsible for processing the amyloid precursor protein. Biochem. J.343, 371–375. ArticlePubMedCAS Google Scholar
Krebs L. T., Xue Y., Norton C. R., Shutter J. R., Maguire M., Sundberg J. P., et al. (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev.14, 1343–1352. PubMedCAS Google Scholar
Kulic L., Walter J., Multhaup G., Teplow D. B., Baumeister R., Romig H., et al. (2000) Separation of presenilin function in amyloid beta-peptide generation and endoproteolysis of Notch. Proc. Natl. Acad. Sci. USA97, 5913–5918. ArticlePubMedCAS Google Scholar
Kusumi K., Sun E. S., Kerrebrock A. W., Bronson R. T., Chi D. C., Bulotsky M. S., et al. (1998) The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat. Genet.19, 274–278. ArticlePubMedCAS Google Scholar
Lammich S., Kojro E., Postina R., Gilbert S., Pfeiffer R., Jasionowski M., et al. (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. USA96, 3922–3927 ArticlePubMedCAS Google Scholar
Levitan D. and Greenwald I. (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature377, 351–354. ArticlePubMedCAS Google Scholar
Levitan D., Doyle T. G., Brousseau D., Lee M. K., Thinakaran G., Slunt H. H., et al. (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA93, 14,940–14,944. ArticleCAS Google Scholar
Li X. and Greenwald I. (1997) HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling. Proc. Natl. Acad. Sci. USA94, 12,204–12,209. CAS Google Scholar
Li L., Krantz I. D., Deng Y., Genin A., Banta A. B., Collins C. C., et al. (1997) Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat. Genet.16, 243–251. ArticlePubMedCAS Google Scholar
Li Y. M., Xu M., Lai M. T., Huang Q., Castro J. L., DiMuzio-Mower J., et al. (2000) Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature405, 689–694. ArticlePubMedCAS Google Scholar
Li Y. M., Lai M. T., Xu M., Huang Q., DiMuzio-Mower J., Sardana M. K., et al. (2000) Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proc. Natl. Acad. Sci. USA97, 6138–6143. ArticlePubMedCAS Google Scholar
Logeat F., Bessia C., Brou C., LeBail O., Jarriault S., Seidah N. G., and Israel A. (1998) The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl. Acad. Sci. USA95, 8108–8112. ArticlePubMedCAS Google Scholar
Luo Y., Bolon B., Kahn S., Bennett B. D., Babu-Khan S., Denis P., et al. (2001) Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat. Neurosci.4, 231–232. ArticlePubMedCAS Google Scholar
Muller U., Cristina N., Li Z. W., Wolfer D. P., Lipp H. P., Rulicke T., et al. (1994) Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell79, 755–765. ArticlePubMedCAS Google Scholar
Mumm J. S., Schroeter E. H., Saxena M. T., Griesemer A., Tian X., Pan D. J., et al. (2000) A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol. Cell.5, 197–206. ArticlePubMedCAS Google Scholar
Naruse S., Thinakaran G., Luo J. J., Kusiak J. W., Tomita T., Iwatsubo T., et al. (1998) Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron21, 1213–1221. ArticlePubMedCAS Google Scholar
Niwa M., Sidrauski C., Kaufman R. J., and Walter P. (1999) A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell99, 691–702. ArticlePubMedCAS Google Scholar
Pan D. and Rubin G. M. (1997) Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell90, 271–280. ArticlePubMedCAS Google Scholar
Peschon J. J., Slack J. L., Reddy P., Stocking K. L., Sunnarborg S. W., Lee D. C., et al. (1998) An essential role for ectodomain shedding in mammalian development. Science282, 1281–1284. ArticlePubMedCAS Google Scholar
Petit A., Bihel F., da Costa C. A., Pourquie O., Checler F., and Kraus J. L. (2001) New protease inhibitors prevent gamma-secretase-mediated production of Abeta40/42 without affecting Notch cleavage. Nat. Cell Biol.3, 507–511. ArticlePubMedCAS Google Scholar
Poulson D. F. (1937) Chromosomal deficiencies and the embryonic development of Drosophila melanogaster Proc. Natl. Acad. Sci. USA23, 133–137. ArticlePubMedCAS Google Scholar
Price D. L., Tanzi R. E., Borchelt D. R., and Sisodia S. S. (1998) Alzheimer’s disease: genetic studies and transgenic models. Annu. Rev. Genet.32, 461–493. ArticlePubMedCAS Google Scholar
Qi H., Rand M. D., Wu X., Sestan N., Wang W., Rakic P., Xu T., and Artavanis-Tsakonas S. (1999) Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science283, 91–94. ArticlePubMedCAS Google Scholar
Rand M. D., Grimm L. M., Artavanis-Tsakonas S., Patriub V., Blacklow S. C., Sklar J., and Aster J. C. (2000) Calcium depletion dissociates and activates heterodimeric notch receptors. Mol. Cell Biol.20, 1825–1835. ArticlePubMedCAS Google Scholar
Roberds S. L., Anderson J., Basi G., Bienkowski M. J., Branstetter D. G., Chen K. S., et al. (2001) BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer’s disease therapeutics. Hum. Mol. Genet.10, 1317–1324. ArticlePubMedCAS Google Scholar
Robey E., Chang D., Itano A., Cado D., Alexander H., Lans D., Weinmaster G., and Salmon P. (1996) An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell87, 483–492. ArticlePubMedCAS Google Scholar
Robson MacDonald H., Wilson A., and Radtke F. (2001) Notch1 and T-cell development: insights from conditional knockout mice. Trends Immunol.22, 155–160. Article Google Scholar
Rooke J., Pan D., Xu T., and Rubin G. M. (1996) KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis Science273, 1227–1231. ArticlePubMedCAS Google Scholar
Sakai J., Rawson R. B., Espenshade P. J., Cheng D., Seegmiller A. C., Goldstein J. L., and Brown M. S. (1998) Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell.2, 505–514. ArticlePubMedCAS Google Scholar
Sato N., Urano F., Yoon Leem J., Kim S. H., Li M., Donoviel D., et al. (2000) Upregulation of BiP and CHOP by the unfolded-protein responseis independent of presenilin expression. Nat. Cell Biol.2, 863–870. ArticlePubMedCAS Google Scholar
Scheuner D., Eckman C., Jensen M., Song X., Citron M., Suzuki N., et al. (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med.2, 864–870. ArticlePubMedCAS Google Scholar
Schroeter E. H., Kisslinger J. A., and Kopan R. (1998) Notch1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature393, 382–386. ArticlePubMedCAS Google Scholar
Selkoe D. J. (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev.81, 741–766. PubMedCAS Google Scholar
Shen J., Bronson R. T., Chen D. F., Xia W., Selkoe D. J., and Tonegawa S. (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell89, 629–639. ArticlePubMedCAS Google Scholar
Song W., Nadeau P., Yuan M., Yang X., Shen J., and Yankner B. A. (1999) Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc. Natl. Acad. Sci. USA96, 6959–6963. ArticlePubMedCAS Google Scholar
Soriano S., Kang D. E., Fu M., Pestell R., Chevallier N., Zheng H., and Koo E. H. (2001) Presenilin 1 negatively regulates beta-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of beta-amyloid precursor protein and notch processing. J. Cell Biol.152, 785–794. ArticlePubMedCAS Google Scholar
Sotillos S., Roch F., and Campuzano S. (1997) The metalloprotease-disintegrin Kuzbanian participates in Notch activation during growth and patterning of Drosophila imaginal discs. Development124, 4769–4779. PubMedCAS Google Scholar
Struhl G. and Adachi A. (2000) Requirements for presenilin-dependent cleavage of notch and other trans-membrane proteins. Mol. Cell.6, 625–636. ArticlePubMedCAS Google Scholar
Struhl G. and Greenwald I. (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature398, 522–525. ArticlePubMedCAS Google Scholar
Struhl G. and Greenwald I. (2001) Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila. Proc. Natl. Acad. Sci. USA98, 229–234. ArticlePubMedCAS Google Scholar
Swiatek P. J., Lindsell C. E., del Amo F. F., Weinmaster G., and Gridley T. (1994) Notch1 is essential for post-implantation development in mice. Genes Dev.8, 707–719. ArticlePubMedCAS Google Scholar
Takahashi Y., Koizumi K., Takagi A., Kitajima S., Inoue T., Koseki H., and Saga Y. (2000) Mesp2 initiates somite segmentation through the Notch signalling pathway. Nat. Genet.25, 390–396. ArticlePubMedCAS Google Scholar
Tsai H., Hardisty R. E., Rhodes C., Kiernan A. E., Roby P., Tymowska-Lalanne Z., et al. (2001) The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum. Mol. Genet.10, 507–512. ArticlePubMedCAS Google Scholar
Uyttendaele H., Marazzi G., Wu G., Yan Q., Sassoon D., and Kitajewski J. (1996) Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development122, 2251–2259. PubMedCAS Google Scholar
von Koch C. S., Zheng H., Chen H., Trumbauer M., Thinakaran G., van der Ploeg L. H., et al. (1997) Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol. Aging18, 661–669. Article Google Scholar
Wen C., Metzstein M. M., and Greenwald I. (1997) SUP-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCH signalling. Development124, 4759–4767. PubMedCAS Google Scholar
Wolfe M. S., Xia W., Ostaszewski B. L., Diehl T. S., Kimberly W. T., and Selkoe D. J. (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature398, 513–517. ArticlePubMedCAS Google Scholar
Wong P. C., Zheng H., Chen H., Becher M. W., Sirinathsinghji D. J., Trumbauer M. E., et al. (1997) Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature387, 288–292. ArticlePubMedCAS Google Scholar
Ye J., Rawson R. B., Komuro R., Chen X., Dave U. P., Prywes R., et al. (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell6, 1355–1364. ArticlePubMedCAS Google Scholar
Ye Y., Lukinova N., and Fortini M. E. (1999) Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature398, 525–529. ArticlePubMedCAS Google Scholar
Yu G., Nishimura M., Arawaka S., Levitan D., Zhang L., Tandon A., et al. (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature407, 48–54. ArticlePubMedCAS Google Scholar
Yu G., Chen F., Levesque G., Nishimura M., Zhang D. M., Levesque L., et al. (1998) The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains beta-catenin. J. Biol. Chem.273, 16,470–16,475. CAS Google Scholar
Zhang Z., Nadeau P., Song W., Donoviel D., Yuan M., Bernstein A., and Yankner B. A. (2000) Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat. Cell Biol.2, 463–465. ArticlePubMedCAS Google Scholar
Zhao J., Chen H., Peschon J. J., Shi W., Zhang Y., Frank S. J., and Warburton D. (2001) Pulmonary hypoplasia in mice lacking tumor necrosis factor-alpha converting enzyme indicates an indispensable role for cell surface protein shedding during embryonic lung branching morphogenesis. Dev. Biol.232, 204–218. ArticlePubMedCAS Google Scholar
Zheng H., Jiang M., Trumbauer M. E., Sirinathsinghji D. J., Hopkins R., Smith D. W., et al. (1995) beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell81, 525–531. ArticlePubMedCAS Google Scholar