Mood stabilizers target cellular plasticity and resilience cascades (original) (raw)
Tohen M., Hennen J., Zarate C. M. Jr., et al. (2000) Two-year syndromal and functional recovery in 219 cases of first-episode major affective disorder with psychotic features. Am. J. Psychiatry157, 220–228. ArticlePubMedCAS Google Scholar
Benazzi F. (2001) Prevalence and clinical correlates of residual depressive symptoms in bipolar II disorder. Psychother. Psychosom.70, 232–238. ArticlePubMedCAS Google Scholar
Keitner G. I., Solomon D. A., Ryan C. E., et al. (1996) Prodromal and residual symptoms in bipolar I disorder. Compr. Psychiatry37, 362–367. ArticlePubMedCAS Google Scholar
Gitlin M. J., Swendsen J., Heller T. L., and Hammen C. (1995) Relapse and impairment in bipolar disorder. Am. J. Psychiatry152, 1635–1640. PubMedCAS Google Scholar
Zarate C. A. Jr., Tohen M., Land M., and Cavanagh S. (2000) Functional impairment and cognition in bipolar disorder. Psychiatr. Q.71, 309–329. ArticlePubMed Google Scholar
MacQueen G. M., Young L. T., and Joffe R. T. (2001) A review of psychosocial outcome in patients with bipolar disorder. Acta. Psychiatr. Scand.103, 163–170. ArticlePubMedCAS Google Scholar
Murray C. J. and Lopez A. D. (1997) Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet349, 1498–1504. ArticlePubMedCAS Google Scholar
Musselman D. L., Evans D. L., and Nemeroff C. B. (1998) The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment. Arch. Gen. Psychiatry55, 580–592. ArticlePubMedCAS Google Scholar
Michelson D., Stratakis C., Hill L., et al. (1996) Bone mineral density in women with depression. N. Engl. J. Med.335, 1176–1181. ArticlePubMedCAS Google Scholar
Ciechanowski P. S., Katon W. J., and Russo J. E. (2000) Depression and diabetes: impact of depressive symptoms on adherence, function, and costs. Arch. Intern. Med.160, 3278–3285. ArticlePubMedCAS Google Scholar
Gould T. D. and Manji H. K. (2002) Signaling networks in the pathophysiology and treatment of mood disorders. J. Psychosom. Res.53, 687–697. ArticlePubMed Google Scholar
Manji H. K., Bebchuk J. M., Moore G. J., Glitz D., Hasanat K. A., and Chen G. (1999) Modulation of CNS signal transduction pathways and gene expression by mood-stabilizing agents: therapeutic implications. J. Clin. Psychiatry60, 27–39; discussion 40–21, 113–116. PubMed Google Scholar
Manji H. K., Chen G., Hsiao J. K., Risby E. D., Masana M. I., and Potter W. Z. (1996) Regulation of signal transduction pathways by mood-stabilizing agents: implications for the delayed onset of therapeutic efficacy. J. Clin. Psychiatry57, 34–46; discussion 47–38. PubMedCAS Google Scholar
Chen G., Manji H. K., Hawver D. B., Wright C. B., and Potter W. Z. (1994) Chronic sodium valproate selectively decreases protein kinase C alpha and epsilon in vitro. J. Neurochem.63, 2361–2364. ArticlePubMedCAS Google Scholar
Williams R. S., Cheng L., Mudge A. W., and Harwood A. J. (2002) A common mechanism of action for three mood-stabilizing drugs. Nature417, 292–295. ArticlePubMedCAS Google Scholar
Lenox R. H., McNamara R. K., Watterson J. M., and Watson D. G. (1996) Myristoylated alanine-rich C kinase substrate (MARCKS): a molecular target for the therapeutic action of mood stabilizers in the brain? J. Clin. Psychiatry57, 23–31; discussion 32–33. PubMedCAS Google Scholar
Lenox R. H. and Wang L. (2003) Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol. Psychiatry8, 135–144. ArticlePubMedCAS Google Scholar
Coyle J. T. and Duman R. S. (2003) Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron38, 157–160. ArticlePubMedCAS Google Scholar
Harwood A. J. and Agam G. (2003) Search for a common mechanism of mood stabilizers. Biochem. Pharmacol.66, 179–189. ArticlePubMedCAS Google Scholar
Post R. M. (2000) Psychopharmacology of mood stabilizers. In: Schizophrenia and Mood Disorders: The New Drug Therapies in Clinical Practice., Buckley P. F. and Waddington J. L., eds. Oxford: Butterworth-Heinemann, pp. 127–154. Google Scholar
Ryves W. J. and Harwood A. J. (2001) Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem. Biophys. Res. Commun.280, 720–725. ArticlePubMedCAS Google Scholar
Davies S. P., Reddy H., Caivano M., and Cohen P. (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J.351, 95–105. ArticlePubMedCAS Google Scholar
Amari L., Layden B., Rong Q., Geraldes C. F., and Mota de Freitas D. (1999) Comparison of fluorescence, (31)P NMR, and (7)Li NMR spectroscopic methods for investigating Li(+)/Mg(2+) competition for biomolecules. Anal. Biochem.272, 1–7. ArticlePubMedCAS Google Scholar
York J. D., Ponder J. W. and Majerus P. W. (1995) Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc. Natl. Acad. Sci. USA92, 5149–5153. ArticlePubMedCAS Google Scholar
Masuda C. A., Xavier M. A., Mattos K. A., Galina A., and Montero-Lomeli M. (2001) Phosphoglucomutase is an in vivo lithium target in yeast. J. Biol. Chem.10, 10. Google Scholar
Kajda P. K. and Birch N. J. (1981) Lithium inhibition of phosphofructokinase. J. Inorg. Biochem.14, 275–278. ArticlePubMedCAS Google Scholar
Klein P. S. and Melton D. A. (1996) A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA93, 8455–8459. ArticlePubMedCAS Google Scholar
Johannessen C. U. (2000) Mechanisms of action of valproate: a commentatory. Neurochem. Int.37, 103–110. ArticlePubMedCAS Google Scholar
van der Laan J. W., de Boer T., and Bruinvels J. (1979) Di-n-propylacetate and GABA degradation. Preferential inhibition of succinic semialdehyde dehydrogenase and indirect inhibition of GABA-transaminase. J. Neurochem.32, 1769–1780. ArticlePubMed Google Scholar
Sawaya M. C., Horton R. W., and Meldrum B. S. (1975) Effects of anticonvulsant drugs on the cerebral enzymes metabolizing GABA. Epilepsia16, 649–655. PubMedCAS Google Scholar
Whittle S. R. and Turner A. J. (1978) Effects of the anticonvulsant sodium valproate on gamma-aminobutyrate and aldehyde metabolism in ox brain. J. Neurochem.31, 1453–1459. ArticlePubMedCAS Google Scholar
Anlezark G. M., Horton R. W., Meldrum B. S., Sawaya M. C., and Stephenson J. D. (1976) Proceedings: gamma-aminobutyric acid metabolism and the anticonvulsant action of ethanolamine-o-sulphate and di-n-propylacetate. Br. J. Pharmacol.56, 383P,384P.
Gottlicher M., Minucci S., Zhu P., et al. (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. Embo. J.20, 6969–6978. ArticlePubMedCAS Google Scholar
Tremolizzo L., Carboni G., Ruzicka W. B., et al. (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc. Natl. Acad. Sci. USA99, 17,095–17,100. ArticleCAS Google Scholar
Yildirim E., Zhang Z., Uz T., Chen C. Q., Manev R., and Manev H. (2003) Valproate administration to mice increases histone acetylation and 5-lipoxygenase content in the hippocampus. Neurosci. Lett.345, 141–143. ArticlePubMedCAS Google Scholar
Gould T. D., Chen G., and Manji H. K. (2003) In Vivo Evidence in the Brain for Lithium Inhibition of Glycogen Synthease Kinase-3. In Neuropsychopharmacology.
Bourne H. R. and Nicoll R. (1993) Molecular machines integrate coincident synaptic signals. Cell72(Suppl), 65–75. ArticlePubMed Google Scholar
Bhalla U. S. and Iyengar R. (1999) Emergent properties of networks of biological signaling pathways. Science283, 381–387. ArticlePubMedCAS Google Scholar
Weng G., Bhalla U. S., and Iyengar R. (1999) Complexity in biological signaling systems. Science284, 92–96. ArticlePubMedCAS Google Scholar
Manji H. K. (1992) G proteins: implications for psychiatry. Am. J. Psychiatry149, 746–760. PubMedCAS Google Scholar
Szabo S. T., Gould T. D., and Manji H. K. (2003) Introduction to neurotransmitters, receptors, signal transduction, and second messengers. In: Textbook of Psychopharmacology, Nemeroff C., ed. Arlington, VA: American Psychiatric Publishing, pp. 3–52. Google Scholar
Rasenick M. M., Chaney K. A., and Chen J. (1996) G protein-mediated signal transduction as a target of antidepressant and antibipolar drug action: evidence from model systems. J. Clin. Psychiatry57, 49–55; discussion 56–58. PubMedCAS Google Scholar
Berridge M. J., Downes C. P., and Hanley M. R. (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell59, 411–419. ArticlePubMedCAS Google Scholar
Allison J. H., Blisner M. E., Holland W. H., Hipps P. P., and Sherman W. R. (1976) Increased brain myo-inositol 1-phosphate in lithium-treated rats. Biochem. Biophys. Res. Commun.71, 664–670. ArticlePubMedCAS Google Scholar
Allison J. H. and Stewart M. A. (1971) Reduced brain inositol in lithium-treated rats. Nat. New Biol.233, 267,268. ArticlePubMedCAS Google Scholar
Hallcher L. M. and Sherman W. R. (1980) The effects of lithium ion and other agents on the activity of myo- inositol-1-phosphatase from bovine brain. J. Biol. Chem.255, 10,896–10,901. CAS Google Scholar
Naccarato W. F., Ray R. E., and Wells W. W. (1974) Biosynthesis of myo-inositol in rat mammary gland. Isolation and properties of the enzymes. Arch. Biochem. Biophys.164, 194–201. ArticlePubMedCAS Google Scholar
Berridge M. J., Downes C. P., and Hanley M. R. (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J.206, 587–595. PubMedCAS Google Scholar
Manji H. K. and Lenox R. H. (1999) Ziskind-Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol. Psychiatry46, 1328–1351. ArticlePubMedCAS Google Scholar
Manji H. K., Bersudsky Y., Chen G., Belmaker R. H., and Potter W. Z. (1996) Modulation of protein kinase C isozymes and substrates by lithium: the role of myo-inositol. Neuropsychopharmacology15, 370–381. ArticlePubMedCAS Google Scholar
Manji H. K., Etcheberrigaray R., Chen G., and Olds J. L. (1993) Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the alpha isozyme. J. Neurochem.61, 2303–2310. ArticlePubMedCAS Google Scholar
Leli U. and Hauser G. (1992) Lithium modifies diacylglycerol levels and protein kinase C in neuroblastoma cells. Abstracts of the 8th international conference on second messengers and phosphoproteins, Z187F.
Li X. and Jope R. S. (1995) Selective inhibition of the expression of signal transduction proteins by lithium in nerve growth factor-differentiated PC12 cells. J. Neurochem.65, 2500–2508. ArticlePubMedCAS Google Scholar
Lenox R. H., Watson D. G., Patel J., and Ellis J. (1992) Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain. Res.570, 333–340. ArticlePubMedCAS Google Scholar
Watson D. G. and Lenox R. H. (1996) Chronic lithium-induced down-regulation of MARCKS in immortalized hippocampal cells: potentiation by muscarinic receptor activation. J. Neurochem.67, 767–777. ArticlePubMedCAS Google Scholar
Watson D. G., Watterson J. M., and Lenox R. H. (1998) Sodium valproate down-regulates the myristoylated alanine-rich C kinase substrate (MARCKS) in immortalized hippocampal cells: a property of protein kinase C-mediated mood stabilizers. J. Pharmacol. Exp. Ther.285, 307–316. PubMedCAS Google Scholar
Fibiger H. C. (1995) Neurobiology of depression: focus on dopamine. Adv. Biochem. Psychopharmacol.49, 1–17. PubMedCAS Google Scholar
Goodwin F. K. and Jamison K. R. (1990) Manic-Depressive Illness. New York: Oxford University Press. Google Scholar
Einat H., Yuan P., Gould T. D., et al. (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J. Neurosci.23, 7311–7316. PubMedCAS Google Scholar
Nestler E. J., Gould E., Manji H., et al. (2002) Preclinical models: status of basic research in depression. Biol. Psychiatry52, 503–528. ArticlePubMed Google Scholar
Giambalvo C. T. (1992) Protein kinase C and dopamine transport—2. Effects of amphetamine in vitro. Neuropharmacology31, 1211–1222. ArticlePubMedCAS Google Scholar
Gnegy M. E., Hong P., and Ferrell S. T. (1993) Phosphorylation of neuromodulin in rat striatum after acute and repeated, intermittent amphetamine. Brain. Res. Mol. Brain Res.20, 289–298. ArticlePubMedCAS Google Scholar
Iwata S., Hewlett G. H., and Gnegy M. E. (1997) Amphetamine increases the phosphorylation of neuromodulin and synapsin I in rat striatal synaptosomes. Synapse26, 281–291. ArticlePubMedCAS Google Scholar
Iwata S. I., Hewlett G. H., Ferrell S. T., Kantor L., and Gnegy M. E. (1997) Enhanced dopamine release and phosphorylation of synapsin I and neuromodulin in striatal synaptosomes after repeated amphetamine. J. Pharmacol. Exp. Ther.283, 1445–1452. PubMedCAS Google Scholar
Birnbaum S. G., Yuan P. X., Wang M., et al. (2004) Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science306, 882–884. ArticlePubMedCAS Google Scholar
Moore G. J., Bebchuk J. M., Parrish J. K., et al. (1999) Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am. J. Psychiatry156, 1902–1908. PubMedCAS Google Scholar
Hahn C. G. and Friedman E. (1999) Abnormalities in protein kinase C signaling and the pathophysiology of bipolar disorder. Bipolar Disord.1, 81–86. ArticlePubMedCAS Google Scholar
Friedman E., Hoau Yan W., Levinson D., Connell T. A., and Singh H. (1993) Altered platelet protein kinase C activity in bipolar affective disorder, manic episode. Biol. Psychiatry33, 520–525. ArticlePubMedCAS Google Scholar
Wang H. Y. and Friedman E. (1996) Enhanced protein kinase C activity and translocation in bipolar affective disorder brains. Biol. Psychiatry40, 568–575. ArticlePubMedCAS Google Scholar
Kao K. R., Masui Y., and Elinson R. P. (1986) Lithium-induced respecification of pattern in Xenopus-laevis embryos. Nature322, 371–373. ArticleCASPubMed Google Scholar
He X., Saint-Jeannet J. P., Woodgett J. R., Varmus H. E., and Dawid I. B. (1995) Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature374, 617–622. ArticlePubMedCAS Google Scholar
Klein P. S. and Melton D. A. (1996) A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA93, 8455–8459. ArticlePubMedCAS Google Scholar
Stambolic C., Ruel L., and Woodgett J. R. (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol.6, 1664–1668. ArticlePubMedCAS Google Scholar
Gurvich N. and Klein P. S. (2002) Lithium and valproic acid: parallels and contrasts in diverse signaling contexts. Pharmacol. Ther.96, 45–66. ArticlePubMedCAS Google Scholar
O’Brien W. T., Harper A. D., Jove F., et al. (2004) Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J. Neurosci.24, 6791–6798. ArticlePubMedCAS Google Scholar
Phiel C. J., Wilson C. A., Lee V. M., and Klein P. S. (2003) GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature423, 435–439. ArticlePubMedCAS Google Scholar
Chalecka-Franaszek E. and Chuang D. M. (1999) Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc. Natl. Acad. Sci. USA96, 8745–8750. ArticlePubMedCAS Google Scholar
Zhang F., Phiel C. J., Spece L., Gurvich N., and Klein P. S. (2003) Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J. Biol. Chem.278, 33,067–33,077. CAS Google Scholar
Kirshenboim N., Plotkin B., Shlomo S. B., Kaidanovich-Beilin O., and Eldar-Finkelman H. (2004) Lithium-mediated phosphorylation of glycogen synthase kinase-3b involves PI3 kinase-dependent activation of protein kinase C-alpha. J. Mol. Neurosci.24, 237–245. ArticlePubMedCAS Google Scholar
Frame S. and Cohen P. (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem. J.359, 1–16. ArticlePubMedCAS Google Scholar
Gould T. D., Zarate C. A. J., and Manji H. K. Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. J. Clin. Psychiatry, in press.
Woodgett J. R. (2001) Judging a protein by more than its name: gsk-3. STKE2001, RE12.
Gould T. D and Manji H. K. (2002) The wnt signaling pathway in bipolar disorder. Neuroscientist8, 497–511. PubMedCAS Google Scholar
Lenox R. H., Gould T. D., and Manji H. K. (2002) Endophenotypes in bipolar disorder. Am. J. Med. Genet.114, 391–406. ArticlePubMed Google Scholar
Jope R. S. and Bijur G. N. (2002) Mood stabilizers, glycogen synthase kinase-3beta and cell survival. Mol. Psychiatry7(Suppl 1), S35-S45. ArticlePubMedCAS Google Scholar
Manji H. K., Moore G. J., and Chen G. (1999) Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol. Psychiatry46, 929–940. ArticlePubMedCAS Google Scholar
Kaidanovich-Beilin O., Milman A., Weizman A., Pick C. G., and Eldar-Finkelman H. (2004) Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol. Psychiatry55, 781–784. ArticlePubMedCAS Google Scholar
Gould T. D., Einat H., Bhat R., and Manji H. K. (2004) AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int. J. Neuropsychopharmacol. 1–4.
Li X., Zhu W., Roh M. S., Friedman A. B., Rosborough K., and Jope R. S. (2004) In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology29, 1426–1431. ArticlePubMedCAS Google Scholar
Beaulieu J. M., Sotnikova T. D., Yao W. D., et al. (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc. Natl. Acad. Sci. USA101, 5099–5104. ArticlePubMedCAS Google Scholar
Phiel C. J. and Klein P. S. (2001) Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol.41, 789–813. ArticlePubMedCAS Google Scholar
Phiel C. J., Zhang F., Huang E. Y., Guenther M. G., Lazar M. A., and Klein P. S. (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem.276, 36,734–36,741. CAS Google Scholar
Chen G., Huang L. D., Jiang Y. M., and Manji H. K. (1999) The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J. Neurochem.72, 1327–1330. ArticlePubMedCAS Google Scholar
Hall A. C., Brennan A., Goold R. G., et al. (2002) Valproate Regulates GSK-3-Mediated Axonal Remodeling and Synapsin I Clustering in Developing Neurons. Mol. Cell Neurosci.20, 257–270. ArticlePubMedCAS Google Scholar
Li X., Bijur G. N., and Jope R. S. (2002) Glycogen synthase kinase 3-beta, mood stabilizers, and neuroprotection. Bipolar Disorders4, 137–144. ArticlePubMedCAS Google Scholar
Grimes A. C. and Jope R. S. (2001) CREB DNA binding activity is inhibited by glycogen synthase kinase-3beta and facilitated by lithium. J. Neurochem.78, 1–15. Article Google Scholar
Sheline Y. I. (2003) Neuroimaging studies of mood disorder effects on the brain. Biol. Psychiatry54, 338–352. ArticlePubMed Google Scholar
Drevets W. C. (2000) Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog. Brain. Res.126, 413–431. ArticlePubMedCAS Google Scholar
Manji H. K., Drevets W. C., and Charney D. S. (2001) The cellular neurobiology of depression. Nat. Med.7, 541–547. ArticlePubMedCAS Google Scholar
Drevets W. C. (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Ann. N. Y. Acad. Sci.985, 420–444. ArticlePubMed Google Scholar
Manji H. K. and Duman R. S. (2001) Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol. Bull.35, 5–49. PubMedCAS Google Scholar
Drevets W. C. (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr. Opin. Neurobiol.11, 240–249. ArticlePubMedCAS Google Scholar
Strakowski S. M., Adler C. M., and DelBello M. P. (2002) tric MRI studies of mood disorders: do they distinguish unipolar and bipolar disorder? Bipolar Disord.4, 80–88. ArticlePubMed Google Scholar
Beyer J. L. and Krishnan K. R. (2002) tric brain imaging findings in mood disorders. Bipolar Disorders4, 89–104. ArticlePubMed Google Scholar
Cotter D., Mackay D., Landau S., Kerwin R., and Everall I. (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch. Gen. Psychiatry58, 545–553. ArticlePubMedCAS Google Scholar
Rajkowska G. (2002) Cell pathology in bipolar disorder. Bipolar Disord4, 129–116. Article Google Scholar
Soares J. C. and Mann J. J. (1997) The anatomy of mood disorders—review of structural neuroimaging studies. Biol. Psychiatry41, 86–106. ArticlePubMedCAS Google Scholar
Stoll A. L., Renshaw P. F., Yurgelun-Todd D. A., and Cohen B. M. (2000) Neuroimaging in bipolar disorder: what have we learned? Biol. Psychiatry48, 505–517. ArticlePubMedCAS Google Scholar
Kessler R. C. (1997) The effects of stressful life events on depression. Annu. Rev. Psychol.48, 191–214. ArticlePubMedCAS Google Scholar
Lee A. L., Ogle W. O., and Sapolsky R. M. (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disorders4, 117–128. ArticlePubMedCAS Google Scholar
Sapolsky R. M. (2001) Depression, antidepressants, and the shrinking hippocampus. Proc. Natl. Acad. Sci. USA98, 12,320–12,322. ArticleCAS Google Scholar
Sapolsky R. M. (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry57, 925–935. ArticlePubMedCAS Google Scholar
Malberg J. E. and Duman R. S. (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology28, 1562–1571. ArticlePubMedCAS Google Scholar
Pham K., Nacher J., Hof P. R., and McEwen B. S. (2003) Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur. J. Neurosci.17, 879–886. ArticlePubMed Google Scholar
Gould E., Tanapat P., Rydel T., and Hastings N. (2000) Regulation of hippocampal neurogenesis in adulthood. Biol. Psychiatry48, 715–720. ArticlePubMedCAS Google Scholar
Bhat R. V., Shanley J., Correll M. P., et al. (2000) Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc. Natl. Acad. Sci. USA97, 11,074–11,079. ArticleCAS Google Scholar
Cimarosti H., Rodnight R., Tavares A., et al. (2001) An investigation of the neuroprotective effect of lithium in organotypic slice cultures of rat hippocampus exposed to oxygen and glucose deprivation. Neurosci. Lett.315, 33–36. ArticlePubMedCAS Google Scholar
D’Mello S. R., Anelli R., and Calissano P. (1994) Lithium induces apoptosis in immature cerebellar granule cells but promotes survival of mature neurons. Exp. Cell. Res.211, 332–338. ArticlePubMedCAS Google Scholar
Khodorov B., Pinelis V., Vinskaya N., Sorokina E., Grigortsevich N., and Storozhevykh T. (1999) Li+ protects nerve cells against destabilization of Ca2+ homeostasis and delayed death caused by removal of external Na+. FEBS Lett.448, 173–176. ArticlePubMedCAS Google Scholar
Nonaka S., Hough C. J., and Chuang D. M. (1998) Chronic lithium treatment robustyl protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx. Proc. Natl. Acad. Sci. USA95, 2642–2647. ArticlePubMedCAS Google Scholar
Hashimoto R., Hough C., Nakazawa T., Yamamoto T., and Chuang D. M. (2002) Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J. Neurochem.80, 589–597. ArticlePubMedCAS Google Scholar
Kanai H., Chalecka-Franaszek E., Chen R. W., Hashimoto R., Hiroi T., and Chuang D. M. (2001) Valproic acid protects against glutamate-induced excitotoxicity in mature cerebellar granule cells. Society for Neuroscience Annual Meeting Abstract94.18.
Chen R. W. and Chuang D. M. (1999) Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J. Biol. Chem.274, 6039–6042. ArticlePubMedCAS Google Scholar
Centeno F., Mora A., Fuentes J. M., Soler G., and Claro E. (1998) Partial lithium-associated protection against apoptosis induced by C2-ceramide in cerebellar granule neurons. Neuroreport9, 4199–4203. ArticlePubMedCAS Google Scholar
Nonaka S., Katsube N., and Chuang D. M. (1998) Lithium protects rat cerebellar granule cells against apoptosis induced by anticonvulsants, phenytoin and carbamazepine. J. Pharmacol. Exp. Ther.286, 539–547. PubMedCAS Google Scholar
Jeong M. R., Hashimoto R., Senatorov V. V., et al. (2003) Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett.542, 74–78. ArticlePubMedCAS Google Scholar
Alvarez G., Munoz-Montano J. R., Satrustegui J., Avila J., Bogonez E., and Diaz-Nido J. (1999) Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration. FEBS Lett.453, 260–264. ArticlePubMedCAS Google Scholar
Chuang D. M., Chen R., Chalecka-Franaszek E., et al. (2002) Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disorders4, 129–136. ArticlePubMedCAS Google Scholar
Chen G., Zeng W. Z., Yuan P. X., et al. (1999) The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J. Neurochem.72, 879–882. ArticlePubMedCAS Google Scholar
Nonaka S. and Chuang D. M. (1998) Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats. Neuroreport9, 2081–2084. ArticlePubMedCAS Google Scholar
Ren M., Senatorov V. V., Chen R. W., and Chuang D. M. (2003) Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proc. Natl. Acad. Sci. USA100, 6210–6215. ArticlePubMedCAS Google Scholar
Ren M., Leng Y., Jeong M. R., Leeds P., and Chuang D. M. (2004) Valproaic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem.89, 1358–1367. ArticlePubMedCAS Google Scholar
Wei H., Qin Z. H., Senatorov V. V., et al. (2001) Lithium suppresses excitotoxicity-induced striatal lesions in a rat model of Huntington’s disease. Neuroscience106, 603–612. ArticlePubMedCAS Google Scholar
Cameron H. A., Hazel T. G., and McKay R. D. (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J. Neurobiol.36, 287–306. ArticlePubMedCAS Google Scholar
Jacobs B. L. (2002) Adult brain neurogenesis and depression. Brain. Behav. Immun.16, 602–609. ArticlePubMedCAS Google Scholar
Jacobs B. L., Praag H., and Gage F. H. (2000) Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol. Psychiatry5, 262–269. ArticlePubMedCAS Google Scholar
Magavi S. S. and Macklis J. D. (2001) Manipulation of neural precursors in situ: induction of neurogenesis in the neocortex of adult mice. Neuropsychopharmacology25, 816–835. ArticlePubMedCAS Google Scholar
Duman R. S., Nakagawa S., and Malberg J. (2001) Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology25, 836–844. ArticlePubMedCAS Google Scholar
Malberg J. E., Eisch A. J., Nestler E. J., and Duman R. S. (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci.20, 9104–9110. PubMedCAS Google Scholar
Manev H., Uz T., Smalheiser N. R., and Manev R. (2001) Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur. J. Pharmacol.411, 67–70. ArticlePubMedCAS Google Scholar
Santarelli L., Saxe M., Gross C., et al. (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science301, 805–809. ArticlePubMedCAS Google Scholar
Hashimoto R., Senatorov V., Kanai H., Leeds P., and Chuang D. M. (2003) Lithium stimulates progenitor proliferation in cultured brain neurons. Neuroscience117, 55–61. ArticlePubMedCAS Google Scholar
Chen G., Rajkowska G., Du F., Seraji-Bozorgzad N., and Manji H. K. (2000) Enhancement of hippocampal neurogenesis by lithium. J. Neurochem.75, 1729–1734. ArticlePubMedCAS Google Scholar
Hao Y., Creson T., Zhang L., et al. (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J. Neurosci.24, 6590–6599. ArticlePubMedCAS Google Scholar
McAllister A. K. (2002) Neurotrophins and cortical development. Results Probl. Cell. Differ.39, 89–112. PubMedCAS Google Scholar
McAllister A. K., Katz L. C., and Lo D. C. (1999) Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci.22, 295–318. ArticlePubMedCAS Google Scholar
McAllister A. K. (2001) Neurotrophins and neuronal differentiation in the central nervous system. Cell. Mol. Life Sci.58, 1054–1060. ArticlePubMedCAS Google Scholar
Rasmusson A. M., Shi L., and Duman R. (2002) Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology27, 133–142. ArticlePubMedCAS Google Scholar
Smith M. A. and Cizza G. (1996) Stress-induced changes in brain-derived neurotrophic factor expression are attenuated in aged Fischer 344/N rats. Neurobiol. Aging17, 859–864. ArticlePubMedCAS Google Scholar
Ueyama T., Kawai Y., Nemoto K., Sekimoto M., Tone S., and Senba E. (1997) Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci. Res.28, 103–110. ArticlePubMedCAS Google Scholar
Smith M. A., Makino S., Kvetnansky R., and Post R. M. (1995) Effects of stress on neurotrophic factor expression in the rat brain. Ann. NY Acad. Sci.771, 234–239. ArticlePubMedCAS Google Scholar
Nibuya M., Morinobu S., and Duman R. S. (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci.15, 7539–7547. PubMedCAS Google Scholar
Chen B., Dowlatshahi D., MacQueen G. M., Wang J. F., and Young L. T. (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol. Psychiatry50, 260–265. ArticlePubMedCAS Google Scholar
Shirayama Y., Chen A. C., Nakagawa S., Russell D. S., and Duman R. S. (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci.22, 3251–3261. PubMedCAS Google Scholar
Fukumoto T., Morinobu S., Okamoto Y., Kagaya A., and Yamawaki S. (2001) Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology (Berl)158, 100–106. ArticleCAS Google Scholar
Hashimoto R., Takei N., Shimazu K., Christ L., Lu B., and Chuang D. M. (2002) Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology43, 1173–1179. ArticlePubMedCAS Google Scholar
Yu I. T., Kim J. S., Lee S. H., Lee Y. S., and Son H. (2003) Chronic lithium enhances hippocampal long-term potentiation, but not neurogenesis, in the aged rat dentate gyrus. Biochem. Biophys. Res. Commun.303, 1193–1198. ArticlePubMedCAS Google Scholar
Son H., Yu I. T., Hwang S. J., et al. (2003) Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J. Neurochem.85, 872–881. ArticlePubMedCAS Google Scholar
Patapoutian A. and Reichardt L. F. (2001) Trk receptors: mediators of neurotrophin action. Curr. Opin. Neurobiol.11, 272–280. ArticlePubMedCAS Google Scholar
Yuan P. X., Huang L. D., Jiang Y. M., Gutkind J. S., Manji H. K., and Chen G. (2001) The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J. Biol. Chem.276, 31,674–31,683. CAS Google Scholar
Manji H. K., Moore G. J., Rajkowska G., and Chen G. (2000) Neuroplasticity and cellular resilience in mood disorders. Mol. Psychiatry5, 578–593. ArticlePubMedCAS Google Scholar
Huang X., Wu D. Y., Chen G., Manji H., and Chen D. F. (2003) Support of retinal ganglion cell survival and axon regeneration by lithium through a Bcl-2-dependent mechanism. Invest. Ophthalmol. Vis. Sci.44, 347–354. ArticlePubMed Google Scholar
Quiroz J., Singh J., Gould T. D., Denicoff K. D., Zarate C. A., and Manji H. K. (2004) Emerging experimental therapeutics for bipolar disorder: clues from the molecular pathophysiology. Mol. Psychiatry.9, 734–755. ArticlePubMedCAS Google Scholar
De Sarno P., Li X., and Jope R. S. (2002) Regulation of Akt and glycogen synthase kinase-3beta phosphorylation by sodium valproate and lithium. Neuropharmacology43, 1158–1164. ArticlePubMed Google Scholar
Kato T. and Kato N. (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord.2, 180–190. ArticlePubMedCAS Google Scholar
Tseng W. P. and Lin-Shiau S. Y. (2002) Long-term lithium treatment prevents neurotoxic effects of beta-bungarotoxin in primary cultured neurons. J. Neurosci. Res.69, 633–641. ArticlePubMedCAS Google Scholar
Wang J. F., Azzam J. E., and Young L. T. (2003) Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells. Neuroscience116, 485–489. ArticlePubMedCAS Google Scholar
Pivovarova N. B., Pozzo-Miller L. D., Hongpaisan J., and Andrews S. B. (2002) Correlated calcium uptake and release by mitochondria and endoplasmic reticulum of CA3 hippocampal dendrites after afferent synaptic stimulation. J. Neurosci.22, 10,653–10,661. CAS Google Scholar
Williams J. M., Thompson V. L., Mason-Parker S. E., Abraham W. C., and Tate W. P. (1998) Synaptic activity-dependent modulation of mitochondrial gene expression in the rat hippocampus. Brain. Res. Mol. Brain Res.60, 50–56. ArticlePubMedCAS Google Scholar
Mattson M. P. and Liu D. (2003) Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem. Biophys. Res. Commun.304, 539–549. ArticlePubMedCAS Google Scholar
Murphy A. N., Bredesen D. E., Cortopassi G., Wang E., and Fiskum G. (1996) Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc. Natl. Acad. Sci. USA93, 9893–9898. ArticlePubMedCAS Google Scholar
Duchen M. R. (2000) Mitochondria and Ca(2+)in cell physiology and pathophysiology. Cell Calcium28, 339–348. ArticlePubMedCAS Google Scholar
Hoshi M., Sato M., Kondo S., et al. (1995) Different localization of tau protein kinase I/glycogen synthase kinase-3 beta from glycogen synthase kinase-3 alpha in cerebellum mitochondria. J. Biochem. (Tokyo)118, 683–685. CAS Google Scholar
King T. D., Bijur G. N., and Jope R. S. (2001) Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain. Res.919, 106–114. ArticlePubMedCAS Google Scholar
Dumont P., Leu J. I., Della Pietra A. C. 3rd, George D. L., and Murphy M. (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet.33, 357–365. ArticlePubMedCAS Google Scholar
Marchenko N. D., Zaika A., and Moll U. M. (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem.275, 16,202–16,212. ArticleCAS Google Scholar
Sansome C., Zaika A., Marchenko N. D., and Moll U. M. (2001) Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett.488, 110–115. ArticlePubMedCAS Google Scholar
Watcharasit P., Bijur G. N., Song L., Zhu J., Chen X., and Jope R. S. (2003) Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J. Biol. Chem.278, 48,872–48,879. ArticleCAS Google Scholar
Bijur G. N. and Jope R. S. (2003) Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J. Neurochem.87, 1427–1435. ArticlePubMedCAS Google Scholar
Linseman D. A., Butts B. D., Precht T. A., et al. (2004) Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J. Neurosci.24, 9993–10,002. ArticlePubMedCAS Google Scholar
Moore G. J., Bebchuk J. M., Hasanat K., et al. (2000) Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2’s neurotrophic effects? Biol. Psychiatry48, 1–8. ArticlePubMedCAS Google Scholar
Moore G. J., Bebchuk J. M., Wilds I. B., Chen G., and Manji H. K. (2000) Lithium-induced increase in human brain grey matter. Lancet356, 1241,1242. ArticlePubMedCAS Google Scholar
Silverstone P. H., Wu R. H., O’Donnell T., Ulrich M., Asghar S. J., and Hanstock C. C. (2003) Chronic treatment with lithium, but not sodium valproate, increases cortical _N_-acetylaspartate concentrations in euthymic bipolar patients. Int. Clin. Psychopharmacol.18, 73–79. ArticlePubMed Google Scholar
Sassi R., Nicoletti M., Brambilla P., et al. (2002) Increased gray matter in lithium-treated bipolar disorder patients. Neurosci. Lett.329, 243. ArticlePubMedCAS Google Scholar
Atack J. R. (1997) Inositol monophosphatase inhibitors—lithium mimetics? Med. Res. Rev.17, 215–224. ArticlePubMedCAS Google Scholar
Atack J. R., Cook S. M., Watt A. P., Fletcher S. R., and Ragan C. I. (1993) In vitro and in vivo inhibition of inositol monophosphatase by the bisphosphonate L-690,330. J. Neurochem.60, 652–658. ArticlePubMedCAS Google Scholar
Atack J. R., Prior A. M., Fletcher S. R., Quirk K., McKernan R., and Ragan C. I. (1994) Effects of L-690,488, a prodrug of the bisphosphonate inositol monophosphatase inhibitor L-690,330, on phosphatidylinositol cycle markers. J. Pharmacol. Exp. Ther.270, 70–76. PubMedCAS Google Scholar
Pollack S. J., Atack J. R., Knowles M. R., et al. (1994) Mechanism of inositol monophosphatase, the putative target of lithium therapy. Proc. Natl. Acad. Sci. USA91, 5766–5770. ArticlePubMedCAS Google Scholar
Bone R., Springer J. P., and Atack J. R. (1992) Structure of inositol monophosphatase, the putative target of lithium therapy. Proc. Natl. Acad. Sci. USA89, 10,031–10,035. ArticleCAS Google Scholar
Chen S. J., Sweatt J. D., and Klann E. (1997) Enhanced phosphorylation of the postsynaptic protein kinase C substrate RC3/neurogranin during long-term potentiation. Brain. Res.749, 181–187. ArticlePubMedCAS Google Scholar
Conn P. J. and Sweatt J. D. (1994) Protein kinase C in the nervous system. In: Protein Kinase C, Kuo J. F., ed. New York: Oxford University Press, pp. 199–235. Google Scholar
Manji H. K. and Chen G. (2002) PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers. Mol. Psychiatry7 (Suppl 1), S46-S56. ArticlePubMedCAS Google Scholar
Bebchuk J. M., Arfken C. L., Dolan-Manji S., Murphy J., Hasanat K., and Manji H. K. (2000) A preliminary investigation of a protein kinase C inhibitor in the treatment of acute mania. Arch. Gen. Psychiatry57, 95–97. ArticlePubMedCAS Google Scholar
Horgan K., Cooke E., Hallett M. B., and Mansel R. E. (1986) Inhibition of protein kinase C mediated signal transduction by tamoxifen. Importance for antitumour activity. Biochem. Pharmacol.35, 4463–4465. ArticlePubMedCAS Google Scholar
O’Brian C. A., Housey G. M., and Weinstein I. B. (1988) Specific and direct binding of protein kinase C to an immobilized tamoxifen analogue. Cancer Res.48, 3626–3629. PubMedCAS Google Scholar
Frank R. N. (2002) Potential new medical therapies for diabetic retinopathy: protein kinase C inhibitors. Am. J. Ophthalmol.133, 693–698. ArticlePubMedCAS Google Scholar
Aiello L. P. (2002) The potential role of PKC beta in diabetic retinopathy and macular edema. Surv. Ophthalmol.47 (Suppl 2), S263-S269. ArticlePubMed Google Scholar
Parker P. J. (1999) Inhibition of protein kinase C—do we, can we, and should we? Pharmacol. Ther.82, 263–267. ArticlePubMedCAS Google Scholar
Kaidanovich O. and Eldar-Finkelman H. (2002) The role of glycogen synthase kinase-3 in insulin resistance and Type 2 diabetes. Expert Opin. Ther. Targets6, 555–561. ArticlePubMedCAS Google Scholar
Bhat R. V. and Budd S. L. (2002) GSK3beta signalling: casting a wide net in Alzheimer’s disease. Neurosignals11, 251–261. ArticlePubMedCAS Google Scholar
Alvarez G., Munoz-Montano J. R., Satrustegui J., Avila J., Bogonez E., and Diaz-Nido J. (2002) Regulation of tau phosphorylation and protection against beta-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer’s disease. Bipolar Disord.4, 153–165. ArticlePubMedCAS Google Scholar
Sun X., Sato S., Murayama O., et al. (2002) Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100. Neurosci. Lett.321, 61–64. ArticlePubMedCAS Google Scholar
Tong H., Imahashi K., Steenbergen C., and Murphy E. (2002) Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase—dependent pathway is cardioprotective. Circ. Res.90, 377–379. ArticlePubMedCAS Google Scholar
Frame S. and Cohen P. (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem. J.359, 1–16. ArticlePubMedCAS Google Scholar
Sasaki C., Hayashi T., Zhang W. R., et al. (2001) Different expression of glycogen synthase kinase-3beta between young and old rat brains after transient middle cerebral artery occlusion. Neurol. Res.23, 588–592. ArticlePubMedCAS Google Scholar
Dorronsoro I., Castro A., and Martinez A. (2002) Inhibitors of glycogen synthase kinase-3: future therapy for unmet medical needs. Expert Opin. Ther. Patents12, 1527–1536. ArticleCAS Google Scholar
Martinez A., Alonso M., Castro A., Perez C., and Moreno F. J. (2002) First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem.45, 1292–1299. ArticlePubMedCAS Google Scholar
Plotkin B., Kaidanovich O., Talior I., and Eldar-Finkelman H. (2003) Insulin mimetic action of synthetic phosphorylated Peptide inhibitors of glycogen synthase kinase-3. J. Pharmacol. Exp. Ther.305, 974–980. ArticlePubMedCAS Google Scholar
Martinez A., Castro A., Dorronsoro I., and Alonso M. (2002) Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med. Res. Rev.22, 373–384. ArticlePubMedCAS Google Scholar
Ilouz R., Kaidanovich O., Gurwitz D., and Eldar-Finkelman H. (2002) Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem. Biophys. Res. Commun.295, 102–106. ArticlePubMedCAS Google Scholar
D’Sa C. and Duman R. (2002) Antidepressants and neuroplasticity. Bipolar Disorder4, 183. ArticleCAS Google Scholar
Manji H. K., Quiroz J. A., Sporn J., et al. (2003) Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol. Psychiatry53, 707–742. ArticlePubMedCAS Google Scholar
Zeller E., Stief H. J., Pflug B., and Sastre-y-Hernandez M. (1984) Results of a phase II study of the antidepressant effect of rolipram. Pharmacopsychiatry17, 188–190. PubMedCAS Google Scholar
Bobon D., Breulet M., Gerard-Vandenhove M. A., et al. (1988) Is phosphodiesterase inhibition a new mechanism of antidepressant action? A double blind double-dummy study between rolipram and desipramine in hospitalized major and/or endogenous depressives. Eur. Arch. Psychiatry. Neurol. Sci.238, 2–6. ArticlePubMedCAS Google Scholar
Hebenstreit G. F., Fellerer K., Fichte K., et al. (1989) Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry22, 156–160. PubMedCAS Google Scholar
Zhu J., Mix E., and Winblad B. (2001) The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS Drug. Rev.7, 387–398. ArticlePubMedCAS Google Scholar
Marks P., Rifkind R. A., Richon V. M., Breslow R., Miller T., and Kelly W. K. (2001) Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer.1, 194–202. ArticlePubMedCAS Google Scholar
Ketter T. A. and Wang P. W. (2003) The emerging differential roles of GABAergic and antiglutamatergic agents in bipolar disorders. J. Clin. Psychiatry64(Suppl 3), 15–20. PubMedCAS Google Scholar
Plotsky P. M., Owens M. J., and Nemeroff C. B. (1998) Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis. Psychiatr. Clin. North. Am.21, 293–307. ArticlePubMedCAS Google Scholar
Gold P. W. and Chrousos G. P. (2002) Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol. Psychiatry7, 254–275. ArticlePubMedCAS Google Scholar
Seymour P. A., Schmidt A. W., and Schulz D. W. (2003) The pharmacology of CP-154,526, a non-peptide antagonist of the CRH1 receptor: a review. CNS Drug Rev.9, 57–96. ArticlePubMedCAS Google Scholar
Mansbach R. S., Brooks E. N., and Chen Y. L. (1997) Antidepressant-like effects of CP-154,526, a selective CRF1 receptor antagonist. Eur. J. Pharmacol.323, 21–26. ArticlePubMedCAS Google Scholar
Miner J. N., Tyree C., Hu J., et al. (2003) A non-steroidal glucocorticoid receptor antagonist. Mol. Endocrinol.17, 117–127. ArticlePubMedCAS Google Scholar
Honer C., Nam K., Fink C., et al. (2003) Glucocorticoid receptor antagonism by cyproterone acetate and RU486. Mol. Pharmacol.63, 1012–1020. ArticlePubMedCAS Google Scholar
Ur E., Turner T. H., Goodwin T. J., Grossman A., and Besser G. M. (1992) Mania in association with hydrocortisone replacement for Addison’s disease. Postgrad. Med. J.68, 41–43. ArticlePubMedCAS Google Scholar
Salek F. S., Bigos K. L., and Kroboth P. D. (2002) The influence of hormones and pharmaceutical agents on DHEA and DHEA-S concentrations: a review of clinical studies. J. Clin. Pharmacol.42, 247–266. ArticlePubMedCAS Google Scholar
Zarate C. A., Quiroz J., Payne J., and Manji H. K. (2002) Modulators of the glutamatergic system: implications for the development of improved therapeutics in mood disorders. Psychopharmacol. Bull.36, 35–83. PubMed Google Scholar
Einat H., Manji H. K., and Belmater R. H. (2003) New approaches to modeling bipolar disorder. Psychopharm. Bull.37, 47–63. Google Scholar