Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks (original) (raw)
Goodwin FK, Ghaemi SN . The impact of the discovery of lithium on psychiatric thought and practice in the USA and Europe. Aust NZ J Psychiatry 1999; 33 (Suppl): S54–S64. Article Google Scholar
Lenox RH, Manji HK . Lithium. In: Nemeroff C, Schatzberg A (eds). APA Textbook of Psychopharmacology. Washington, DC: APA Press, Inc: 1998, pp. 303–314. Google Scholar
Lenox RH, Hahn CG . Overview of the mechanism of action of lithium in the brain: fifty-year update. J Clin Psychiatry 2000; 61: 5–15. CASPubMed Google Scholar
Hudson CJ, Young LT, Li PP, Warsh JJ . CNS signal transduction in the pathophysiology and pharmacotherapy of affective disorders and schizophrenia. Synapse 1993; 13: 278–293. ArticleCASPubMed Google Scholar
Lenox RH . Role of receptor coupling to phosphoinositide metabolism in the therapeutic action of lithium. In: Ehrlich Y (ed). Molecular Mechanisms of Neuronal Responsiveness. New York: Plenum. Adv Exp Med 1987; 221: 515–530. Chapter Google Scholar
Post RM . Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am J Psychiatry 1992; 149: 999–1010. ArticleCASPubMed Google Scholar
Suppes T, Baldessarini RJ, Faedda GL, Tohen M . Risk of recurrence following discontinuation of lithium treatment in bipolar disorder. Arch Gen Psychiatry 1991; 48: 1082–1088. ArticleCASPubMed Google Scholar
Faedda GL, Tondo L, Baldessarini RJ, Suppes T, Tohen M . Outcome after rapid vs gradual discontinuation of lithium treatment in bipolar disorders. Arch Gen Psychiatry 1993; 50: 448–455. ArticleCASPubMed Google Scholar
Tondo L, Baldessarini RJ, Hennen J, Floris G . Lithium maintenance treatment of depression and mania in bipolar I and bipolar II disorders. Am J Psychiatry 1998; 155: 638–645. ArticleCASPubMed Google Scholar
Lenox RH, McNamara RK, Papke RL, Manji HK . Neurobiology of lithium: an update. J Clin Psychiatry 1998; 59: 37–47. CASPubMed Google Scholar
Manji HK, Lenox RH . Lithium: a molecular transducer of mood-stabilization in the treatment of bipolar disorder. Neuropsychopharmacology 1998; 19: 161–166. ArticleCASPubMed Google Scholar
Jope RS . Anti-bipolar therapy: mechanism of action of lithium. Mol Psychiatry 1999; 4: 117–128. ArticleCASPubMed Google Scholar
Williams RS, Harwood AJ . Lithium therapy and signal transduction. Trends Pharmacol Sci 2000; 21: 61–64. ArticleCASPubMed Google Scholar
Manji HK, Lenox RH . Signaling: cellular insights into the pathophysiology of bipolar disorder [In Process Citation]. Biol Psychiatry 2000; 48: 518–530. ArticleCASPubMed Google Scholar
Hyman SE, Nestler EJ . Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am J Psychiatry 1996; 153: 151–162. ArticleCASPubMed Google Scholar
York JD, Ponder JW, Majerus PW . Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc Natl Acad Sci USA 1995; 92: 5149–5153. ArticleCASPubMedPubMed Central Google Scholar
Phiel C, Klein P . Molecular targets of lithium action. Annu Rev Pharmacol Toxicol 2001; 41: 789–813. ArticleCASPubMed Google Scholar
Hallcher LM, Sherman WR . The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 1980; 255: 10896–10901. CASPubMed Google Scholar
Sherman WR, Gish BG, Honchar MP, Munsell LY . Effects of lithium on phosphoinositide metabolism in vivo. Fed Proc 1986; 45: 2639–2646. CASPubMed Google Scholar
Acharya JK, Labarca P, Delgado R, Jalink K, Zuker CS . Synaptic defects and compensatory regulation of inositol metabolism in inositol polyphosphate 1-phosphatase mutants. Neuron 1998; 20: 1219–1229. ArticleCASPubMed Google Scholar
Manji HK, Lenox RH . Ziskind-Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry 1999; 46: 1328–1351. ArticleCASPubMed Google Scholar
Nahorski SR, Ragan CI, Challiss RA . Lithium and the phosphoinositide cycle: an example of uncompetitive inhibition and its pharmacological consequences. Trends Pharmacol Sci 1991; 12: 297–303. ArticleCASPubMed Google Scholar
Berridge MJ, Downes CP, Hanley MR . Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 1982; 206: 587–595. ArticleCASPubMedPubMed Central Google Scholar
Kendall DA, Nahorski SR . Acute and chronic lithium treatments influence agoinst and depolarization-stimulated inositol phospholipid hydrolysis in rat cerebral cortex. J Pharmacol Exp Ther 1987; 241: 1023–1027. CASPubMed Google Scholar
Kennedy ED, Challiss RA, Nahorski SR . Lithium reduces the accumulation of inositol polyphosphate second messengers following cholinergic stimulation of cerebral cortex slices. J Neurochem 1989; 53: 1652–1655. ArticleCASPubMed Google Scholar
Kennedy ED, Challiss RA, Ragan CI, Nahorski SR . Reduced inositol polyphosphate accumulation and inositol supply induced by lithium in stimulated cerebral cortex slices. Biochem J 1990; 267: 781–786. ArticleCASPubMedPubMed Central Google Scholar
Kofman O, Belmaker RH, Grisaru, N, Alpert C, Fuchs I, Katz V, Rigler O . Myo-inositol attenuates two specific behavioral effects of acute lithium in rats. Psychopharmacol Bull 1991; 27: 185–190. CASPubMed Google Scholar
Tricklebank MD, Singh L, Jackson A, Oles RJ . Evidence that a proconvulsant action of lithium is mediated by inhibition of myo-inositol phosphatase in mouse brain. Brain Res 1991; 558: 145–148. ArticleCASPubMed Google Scholar
Watson DG, Lenox RH . Chronic lithium-induced down-regulation of MARCKS in immortalized hippocampal cells: potentiation by muscarinic receptor activation. J Neurochem 1996; 67: 767–777. ArticleCASPubMed Google Scholar
Fisher SK, Novak JE, Agranoff BW . Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem 2002; 82: 736–754. ArticleCASPubMed Google Scholar
Gani D, Downes CP, Batty I, Bramham J . Lithium and myo-inositol homeostasis. Biochim Biophys Acta 1993; 1177: 253–269. ArticleCASPubMed Google Scholar
Moore GJ, Bedchuk JM, Parrish JK, Faulk MW, Arjken CL, Strahl-Bevacqua J, Marji HK . Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am J Psychiatry 1999; 156: 1902–1908. CASPubMed Google Scholar
Manji HK, Lenox RH . Long-term action of lithium: a role for transcriptional and posttranscriptional factors regulated by protein kinase C. Synapse 1994; 16: 11–28. ArticleCASPubMed Google Scholar
Manji HK, Etcheberrigaray R, Chen G, Olds JL . Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the alpha isozyme. J Neurochem 1993; 61: 2303–2310. ArticleCASPubMed Google Scholar
Manji HK, Bersudsky Y, Chen G, Belmaker RH, Potter WZ . Modulation of protein kinase C isozymes and substrates by lithium: the role of myo-inositol. Neuropsychopharmacology 1996; 15: 370–381. ArticleCASPubMed Google Scholar
Jope RS, Song L . AP-1 and NF-kappaB stimulated by carbachol in human neuroblastoma SH-SY5Y cells are differentially sensitive to inhibition by lithium. Brain Res Mol Brain Res 1997; 50: 171–180. ArticleCASPubMed Google Scholar
Wang HY, Markowitz P, Levinson D, Undie AS, Freidman E . Increased membrane-associated protein kinase C activity and translocation in blood platelets from bipolar affective disorder patients. J Psychiatr Res 1999; 33: 171–179. ArticleCASPubMed Google Scholar
Soares JC, Chen G, Dippold CS et al. Concurrent measures of protein kinase C and phophoinositides in lithium-treated bipolar patients and healthy individuals: a preliminiary study. Psychiatry Res 2000; 95: 109–118. ArticleCASPubMed Google Scholar
Wang H, Freidman E . Increased association of brain protein kinase C with the receptor for activated C kinase-1 (RACK1) in bipolar affective disorder. Biol Psychiatry 2001; 50: 364–370. ArticleCASPubMed Google Scholar
Bebchuk JM, Arfken CL, Dolan-Manji S, Murphy J, Hasanat K, Manji HK . A preliminary investigation of a protein kinase C inhibitor in the treatment of acute mania. Arch Gen Psychiatry 2000; 57: 95–97. ArticleCASPubMed Google Scholar
Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW . Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem 1997; 272: 24735–24738. ArticleCASPubMed Google Scholar
Farr III GH, Ferkey DM, Yost C, Pierce SB, Weaver C, Kimelman D . Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification. J Cell Biol 2000; 148: 691–702. ArticleCASPubMedPubMed Central Google Scholar
McKendry R, Hsu SC, Harland RM, Grosschedl R . LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev Biol 1997; 192: 420–431. ArticleCASPubMed Google Scholar
Brannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D . A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate drosal axis specification in Xenopus. Genes Dev 1997; 11: 2359–2370. ArticleCASPubMedPubMed Central Google Scholar
Riese J, Yu X, Munnerlyn A et al. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 1997; 88: 777–787. ArticleCASPubMed Google Scholar
Shtutman M, Zhurinsky J, Simcha I et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999; 96: 5522–5527. ArticleCASPubMedPubMed Central Google Scholar
Tetsu O, McCormick F . Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398: 422–426. ArticleCASPubMed Google Scholar
He TC, Sparks AB, Rago C et al. Identification of c-MYC as a target of the APC pathway. Science 1998; 281: 1509–1512. ArticleCASPubMed Google Scholar
van der Heyden MA, Rook MB, Hermans MM et al. Identification of connexin43 as a functional target for Wnt signalling. J Cell Sci 1998; 111: 1741–1749. CASPubMed Google Scholar
Bradley RS, Cowin P, Brown AM . Expression of Wnt-1 in PC12 cells results in modulation of plakoglobin and E-cadherin and increased cellular adhesion. J Cell Biol 1993; 123: 1857–1865. ArticleCASPubMed Google Scholar
Mai L, Jope RS, Li X . BDNF-mediated signal transduction is modulated by GSK3beta and mood stabilizing agents. J Neurochem 2002; 82: 75–83. ArticleCASPubMed Google Scholar
Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein JL, Grosschedl R . Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 2000; 127: 469–482. CASPubMed Google Scholar
Graef IA, Mermelstein PG, Stankunas K et al. L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 1999; 401: 703–708. ArticleCASPubMed Google Scholar
Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS . Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol 1997; 185: 82–91. ArticleCASPubMed Google Scholar
Yuan P-X, Huang L-D, Jiang Y-M, Gutkind JS, Manji HK, Chen G . The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J Biol Chem 2001; 276: 31674–31683. ArticleCASPubMed Google Scholar
Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS . Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001; 276: 36734–36741. ArticleCASPubMed Google Scholar
Hall AC, Brennan A, Goold RG et al. Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol Cell Neurosci 2002; 20: 257–270. ArticleCASPubMed Google Scholar
Lovestone S, Davis DR, Webster MT et al. Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry 1999; 45: 995–1003. ArticleCASPubMed Google Scholar
Hong M, Chen DC, Klein PS, Lee VM . Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 1997; 272: 25326–25332. ArticleCASPubMed Google Scholar
Munoz-Montano JR, Moreno FJ, Avila J, Diaz-Nido J . Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons. FEBS Lett 1997; 411: 183–188. ArticleCASPubMed Google Scholar
Eldar-Finkelman H . Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 2002; 8: 126–132. ArticleCASPubMed Google Scholar
Goode N, Hughes K, Woodgett JR, Parker PJ . Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. J Biol Chem 1992; 267: 16878–16882. CASPubMed Google Scholar
Chen RH, Ding WV, McCormick F . Wnt signaling to beta-catenin involves two interactive components. Glycogen synthase kinase-3beta inhibition and activation of protein kinase. C. J Biol Chem 2000; 275: 17894–17899. ArticleCASPubMed Google Scholar
Cook D, Fry M, Hughes K, Sumathipala R, Woodgett J, Dale T . Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J 1996; 15: 4526–4536. ArticleCASPubMedPubMed Central Google Scholar
Sheldahl LC, Park M, Malbon CC, Moon RT . Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol 1999; 9: 695–698. ArticleCASPubMed Google Scholar
Malbon CC, Wang H, Moon RT . Wnt signaling and heterotrimeric G-proteins: strange bedfellows or a classic romance? Biochem Biophys Res Commun 2001; 287: 589–593. ArticleCASPubMed Google Scholar
Liu T, DeCostanzo AJ, Liu X et al. G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway. Science 2001; 292: 1718–1722. ArticleCASPubMed Google Scholar
Chen G, Hasanat KA, Bebchuk JM, Moore GJ, Glitz D, Manji HK . Regulation of signal transduction pathways and gene expression by mood stabilizers and antidepressants. Psychosom Med 1999; 61: 599–617. ArticleCASPubMed Google Scholar
Chen RW, Chuang DM . Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J Biol Chem 1999; 274: 6039–6042. CASPubMed Google Scholar
Chalecka-Franaszek E, Chuang DM . Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neutrons. Proc Natl Acad Sci USA 1999; 96: 8745–8750. ArticleCASPubMedPubMed Central Google Scholar
Berglund K, Midorikawa M, Tachibana M . Increase in the pool size of releasable synaptic vesicles by the activation of protein kinase C in goldfish retinal bipolar cells. J Neurosci 2002; 22: 4776–4785. ArticleCASPubMedPubMed Central Google Scholar
Voets T, Toonen RF, Brain EC et al. Munc18-1 promotes large dense-core vesicle docking. Neuron 2001; 31: 581–591. ArticleCASPubMed Google Scholar
Cordeiro ML, Umbach JA, Gundersen CB . Lithium ions enhance cysteine string protein gene expression in vivo and in vitro. J Neurochem 2000; 74: 2365–2372. ArticleCASPubMed Google Scholar
Buchner E, Gundersen CB . The DnaJ-like cysteine string protein and exocytotic neurotransmitter release. Trends Neurosci 1997; 20: 223–227. ArticleCASPubMed Google Scholar
Heckmann M, Adelsberger H, Dudel J . Evoked transmitter release at neuromuscular junctions in wild type and cysteine string protein null mutant larvae of Drosophila. Neurosci Lett 1997; 228: 167–170. ArticleCASPubMed Google Scholar
Aderem A . The MARCKS brothers: a family of protein kinase C substrates. Cell 1992; 71: 713–716. ArticleCASPubMed Google Scholar
Blackshear PJ . The MARCKS family of cellular protein kinase C substrates. J Biol Chem 1993; 268: 1501–1504. CASPubMed Google Scholar
Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P . GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 2000; 149: 1455–1472. ArticleCASPubMedPubMed Central Google Scholar
Glaser M, Wanaski S, Buser CA et al. Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains. J Biol Chem 1996; 271: 26187–26193. ArticleCASPubMed Google Scholar
Morash SC, Rose SD, Byers DM, Ridgway ND, Cook HW . Overexpression of myristoylated alanine-rich C-kinase substrate enhances activation of phospholipase D by protein kinase C in SK-N-MC human neuroblastoma cells. Biochem J 1998; 332: 321–327. ArticleCASPubMedPubMed Central Google Scholar
Goodall AR, Turner NA, Walker JH, Ball SG, Vaughan PF . Activation of protein kinase C-alpha and translocation of the myristoylated alanine-rich C-kinase substrate correlate with phorbol ester-enhanced noradrenaline release from SH-SY5Y human neuroblastoma cells. J Neurochem 1997; 68: 392–401. ArticleCASPubMed Google Scholar
Li Y, Martin LD, Spizz G, Adler KB . MARCKS protein is a key molecule regulating MUCIN secretion by human airway epithelial cells in vitro. J Biol Chem 2001; 276: 40982–40990. ArticleCASPubMed Google Scholar
Allen LH, Aderem A . A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J Exp Med 1995; 182: 829–840. ArticleCASPubMed Google Scholar
McNamara RK, Lenox RH . Distribution of the protein kinase C substrates MARCKS and MRP in the postnatal developing rat brain. J Comp Neurol 1998; 397: 337–356. ArticleCASPubMed Google Scholar
Stumpo DJ, Bock CB, Tuttle JS, Blackshear PJ . MARCKS deficiency in mice leads to abnormal brain development and perinatal death. Proc Natl Acad Sci USA 1995; 92: 944–948. ArticleCASPubMedPubMed Central Google Scholar
Swierczynski SL, Siddhanti SR, Tuttle JS, Blackshear PJ . Nonmyristoylated MARCKS complements some but not all of the developmental defects associated with MARCKS deficiency in mice. Dev Biol 1996; 179: 135–147. ArticleCASPubMed Google Scholar
Wang JK, Walaas SI, Sihra TS, Aderem A, Greengard P . Phosphorylation and associated translocation of the 87-kDa protein, a major protein kinase C substrate, in isolated nerve terminals. Proc Natl Acad Sci USA 1989; 86: 2253–2256. ArticleCASPubMedPubMed Central Google Scholar
Lu D, Yang H, Lenox RH, Raizada MK . Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons. J Cell Biol 1998; 142: 217–227. ArticleCASPubMedPubMed Central Google Scholar
Ouimet CC, Wang JK, Walaas SI, Albert KA, Greengard P . Localization of the MARCKS (87 kDa) protein, a major specific substrate for protein kinase C, in rat brain. J Neurosci 1990; 10: 1683–1698. ArticleCASPubMedPubMed Central Google Scholar
Yang H, Wang X, Sumners C, Raizada MK . Obligatory role of protein kinase Cbeta and MARCKS in vesicular trafficking in living neurons. Hypertension 2002; 39: 567–572. ArticleCASPubMed Google Scholar
McNamara RK, Stumpo DJ, Morel LM et al. Effect of reduced myristoylated alanine-rich C kinase substrate expression on hippocampal mossy fiber development and spatial learning in mutant mice: transgenic rescue and interactions with gene background. Proc Natl Acad Sci USA 1998; 95: 14517–14522. ArticleCASPubMedPubMed Central Google Scholar
Ramakers GM, McNamara RK, Lenox RH, De Graan PN . Differential changes in the phosphorylation of the protein kinase C substrates myristoylated alanine-rich C kinase substrate and growth-associated protein-43/B-50 following Schaffer collateral long-term potentiation and long-term depression. J Neurochem 1999; 73: 2175–2183. CASPubMed Google Scholar
Hussain R, McNamara RK, Stumpo DJ et al. Effect of MARCKS overexpression on hippocampal long-term potentiation and hippocampal-dependent learning in transgenic mice. Soc Neurosci Abstracts 2000; 26: 1511. Google Scholar
Lenox RH, Watson DG, Patel J, Ellis J . Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain Res 1992; 570: 333–340. ArticleCASPubMed Google Scholar
Wang L, Liu X, Lenox RH . Transcriptional down-regulation of MARCKS gene expression in immortalized hippocampal cells by lithium. J Neurochem 2001; 79: 816–825. ArticleCASPubMed Google Scholar
Watson DG, Wainer BH, Lenox RH . Phorbol ester- and retinoic acid-induced regulation of the protein kinase C substrate MARCKS in immortalized hippocampal cells. J Neurochem 1994; 63: 1666–1674. ArticleCASPubMed Google Scholar
Watson DG, Watterson JM, Lenox RH . Sodium valproate down-regulates the myristoylated alanine-rich C kinase substrate (MARCKS) in immortalized hippocampal cells: a property of protein kinase C-mediated mood statilizers. J Pharmacol Exp Ther 1998; 285: 307–316. CASPubMed Google Scholar
Lenox RH, McNamara RK, Watterson JM, Watson DG . Myristoylated alanine-rich C kinase substrate (MARKCS): a molecular target for the therapeutic action of mood stabilizers in the brain? J Clin Psychiatry 1996; 57: 23–31; discussion 32–33. CASPubMed Google Scholar
Williams RS, Cheng L, Mudge AW, Harwood AJ . A common mechanism of action for three mood-stabilizing drugs. Nature 2002; 417: 292–295. ArticleCASPubMed Google Scholar
Wang L, Liu X, Lenox RH . Transcriptional regulation of mouse MARCKS promoter in immortalized hippocampal cells. Biochem Biophys Res Commun 2002; 292: 969–979. ArticleCASPubMed Google Scholar
Bosetti F, Seemann R, Bell JM et al. Analysis of gene expression with cDNA microarrays in rat brain after 7 and 42 days of oral lithium administration. Brain Res Bull 2002; 57: 205–209. ArticleCASPubMed Google Scholar
de la Fuente A, Brazhnik P, Mendes P . Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet 2002; 18: 395–398. ArticleCASPubMed Google Scholar
Bowden AC . Metabolic control analysis in biotechnology and medicine. Nat Biotechnol 1999; 17: 641–643. ArticleCASPubMed Google Scholar
Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO . Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 2001; 409: 533–538. ArticleCASPubMed Google Scholar
Ren B, Robert F, Wyrick JJ et al. Genome-wide location and function of DNA binding proteins. Science 2000; 290: 2306–2309. ArticleCASPubMed Google Scholar
Weinmann AS, Yan PS, Oberley MJ, Huang TH, Famham PJ . Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev 2002; 16: 235–244. ArticleCASPubMedPubMed Central Google Scholar
Horak CE, Mahajan MC, Luscombe NM, Gerstein M, Weissman SM, Snyder M . GATA-1 binding sites mapped in the beta-globin locus by using mammalian chlp–chip analysis. Proc Natl Acad Sci USA 2002; 99: 2924–2929. ArticleCASPubMedPubMed Central Google Scholar
Weinmann AS, Farnham PJ . Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 2002; 26: 37–47. ArticleCASPubMed Google Scholar
Davidson EH, Rast JP, Oliveri P et al. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Dev Biol 2002; 246: 162–190. ArticleCASPubMed Google Scholar
Oliveri P, Carrick DM, Davidson EH . A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev Biol 2002; 246: 209–228. ArticleCASPubMed Google Scholar