Generating Murine Osteoclasts from Bone Marrow (original) (raw)
References
Roodman, G. D. (1996) Advances in bone biology: the osteoclast. Endocr. Rev.17, 308–332. PubMedCAS Google Scholar
Suda, T., Takahashi, N., and Martin, T. J. (1992) Modulation of osteoclast differentiation. Endocr. Rev.13, 66–80. PubMedCAS Google Scholar
Takahashi, N., Yamana, H., Yoshiki, S., et al. (1988) Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology122, 1373–1382. ArticlePubMedCAS Google Scholar
Takahashi, N., Akatsu, T., Udagawa, N., et al. (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology123, 2600–2602. ArticlePubMedCAS Google Scholar
Yoshida, H., Hayashi, S., Kunisada, T., et al. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature345, 442–444. ArticlePubMedCAS Google Scholar
Yasuda, H,, Shima, N., Nakagawa, N., et al. (1999) A novel molecular mechanism modulating osteoclast differentiation and function. Bone25, 109–113. ArticlePubMedCAS Google Scholar
Takahashi, N., Udagawa, N., and Suda, T. (1999) A new member of TNF ligand family, ODF/RANKL/TRANCE/OPGL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun.256, 449–455. ArticlePubMedCAS Google Scholar
Tanaka, S., Takahashi, T., Takayanagi, H., et al. (1998) Modulation of osteoclast function by adenovirus vector-induced epidermal growth factor receptor. J. Bone Miner. Res.13, 1714–1720. ArticlePubMedCAS Google Scholar
Kobayashi, K., Takahashi, N., Jimi, E., et al. (2000) Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med.191, 275–286. ArticlePubMedCAS Google Scholar
Akatsu, T., Tamura, T., Takahashi, N., et al. (1992) Preparation and characterization of a mouse multinucleated cell population. J. Bone Miner. Res.7, 1297–1306. ArticlePubMedCAS Google Scholar
Suda, T., Nakamura, I., Jimi, E., and Takahashi, N. (1997) Regulation of osteoclast function. J. Bone Miner. Res.12, 869–879. ArticlePubMedCAS Google Scholar
Jimi, E., Ikebe, T., Takahashi, N., Hirata, N., Suda, T., and Koga, T. (1996) Interleukin-1 β activates an NF-κB-like factor in osteoclast-like cells. J. Biol. Chem.271, 4605–4608. ArticlePubMedCAS Google Scholar
Suda, T., Jimi, E., Nakamura, I., and Takahashi, N. (1997) Role of 1α,25-dihydroxyvitamin D3 in osteoclast differentiation and function. Methods Enzymol.282, 223–235. ArticlePubMedCAS Google Scholar
Nakamura, I., Takahashi, N, Sasaki, T., et al. (1995) Wortmannin, a specific inhibitor of phosphatidylinositol-3 kinase, blocks osteoclastic bone resorption. FEBS Lett.361, 79–84. ArticlePubMedCAS Google Scholar
Zhang, D., Udagawa, N., Nakamura, I., et al. (1995) The small GTP-binding protein, rho p21, is involved in bone resorption by regulating cytoskeletal organization in osteoclasts. J. Cell Sci.108, 2285–2292. PubMedCAS Google Scholar
Tanaka, S., Takahashi, N., Udagawa, N., et al. (1992) Osteoclasts express high levels of p60c-src, preferentially on ruffled border membranes. FEBS Lett.313 85–89. ArticlePubMedCAS Google Scholar
Jimi, E., Nakamura, I., Duong, L. T., et al. (1999) Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Exp. Cell Res.247, 84–93. ArticlePubMedCAS Google Scholar
Jimi, E., Akiyama, S., Tsurukai, T., et al. (1999) Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J. Immunol.163, 434–442. PubMedCAS Google Scholar
Wesolowski, G., Duong, L. T., Lakkakorpi, P. T., et al. (1995) Isolation and characterization of highly enriched, prefusion mouse osteoclastic cells. Exp. Cell Res.219, 679–686. ArticlePubMedCAS Google Scholar
Takahashi, N., Akatsu, T., Sasaki, T., et al. (1988) Induction of calcitonin receptors by 1α,25-dihydroxyvitamin D3 in osteoclast-like multinucleated cells formed from mouse bone marrow cells. Endocrinology123, 1504–1510. ArticlePubMedCAS Google Scholar
Tamura, T., Takahashi, N., Akatsu, T., et al. (1993) A new resorption assay with mouse osteoclast-like multinucleated cells formed in vitro. J. Bone Miner. Res.8, 953–960. ArticlePubMedCAS Google Scholar
Miyake, S., Makimura, M., Kanegae, Y., et al. (1996) Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc. Natl. Acad. Sci. USA93, 1320–1324. ArticlePubMedCAS Google Scholar
Simonet, W. S., Lacey, D. L., Dunstan, C. R., et al. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell89, 309–319. ArticlePubMedCAS Google Scholar
Tsuda, E., Goto, M., Mochizuki, S., et al. (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun.234, 137–142. ArticlePubMedCAS Google Scholar
Yasuda, H., Shima, N., Nakagawa, N., et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA95, 3597–3602. ArticlePubMedCAS Google Scholar
Lacey, D. L., Timms, E., Tan, H. L., et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell93, 165–176. ArticlePubMedCAS Google Scholar
Wong, B. R., Rho, J., Arron, J., et al. (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem.272, 25190–25194. ArticlePubMedCAS Google Scholar
Anderson, D. M., Maraskovsky, E., Billingsley, W. L., et al. (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature390, 175–179. ArticlePubMedCAS Google Scholar
The American Society for Bone and Mineral Research President’s Committee on Nomenclature (2000) Proposed standard nomenclature for new tumor necrosis factor family members involved in the regulation of bone resorption. J. Bone Miner. Res.15, 2293–2296. Google Scholar
Udagawa, N., Takahashi, N., Akatsu, T., et al. (1989) The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology125, 1805–1813. ArticlePubMedCAS Google Scholar
Quinn, J. M., Morfis, M., Lam, M. H., et al. (1999) Calcitonin receptor antibodies in the identification of osteoclasts. Bone25, 1–8. ArticlePubMedCAS Google Scholar
Miyazaki, T., Takayanagi, H., Isshiki, M., et al. (2000) In vitro and in vivo suppression of osteoclast function by adenovirus vector-induced csk gene. J. Bone Miner. Res.15, 41–51. ArticlePubMedCAS Google Scholar
Miyazaki, T., Katagiri, H., Kanegae, Y., et al. (2000) Reciprocal role of ERK and NF-κB pathways in survival and activation of osteoclasts. J. Cell Biol.148, 333–342. ArticlePubMedCAS Google Scholar