Transformation Systems in Insects (original) (raw)

References

  1. Atkinson, P. W., Pinkerton, A. C., and O’Brochta, D. A. (2001) Genetic transformation systems in insects. Annu. Rev. Entomol. 46, 317–346.
    Article PubMed CAS Google Scholar
  2. Handler, A. M. An introduction to the history and methodology of insect gene transformation. In Transgenic Insects: Methods and Applications (Handler, A. M. and James, A. A., eds.), CRC, Boca Raton, FL, 2000, pp. 3–26.
    Chapter Google Scholar
  3. Handler, A. M. and O’Brochta, D. A. (1991) Prospects for gene transformation in insects. Annu. Rev. Entomol. 36, 159–183.
    Article PubMed CAS Google Scholar
  4. Walker, V. K. (1989) Gene transfer in insects. Adv. Cell Culture 7, 87–124.
    CAS Google Scholar
  5. Blackman, R. K., Macy, M., Koehler, D., Grimaila, R., and Gelbart, W. M. (1989) Identification of a fully-functional hobo transposable element and its use for germline transformation of Drosophila. EMBO J. 8, 211–217.
    PubMed CAS Google Scholar
  6. O’Brochta, D. A., Warren, W. D., Saville, K. J., and Atkinson, P. W. (1994) Interplasmid transposition of Drosophila hobo elements in non-drosophilid insects. Mol. Gen. Genet. 244, 9–14.
    Article Google Scholar
  7. Handler, A. M. and James, A. A. (eds.) Insect Transgenesis. CRC, Boca Raton, FL, 2000.
    Google Scholar
  8. Ashburner, M. (ed.) Drosophila: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.
    Google Scholar
  9. Karess, R. E. P element mediated germ line transformation of Drosophila. In DNA Cloning: A Practical Approach (Glover, D., ed.), IRL (OUP USA), New York, NY, 1985, pp. 121–141.
    Google Scholar
  10. Pirrotta, V. Cloning Drosophila genes. In Drosophila: A Practical Approach (Roberts, D. B., ed.), IRL (OUP USA), New York, NY, 1986, pp. 83–110.
    Google Scholar
  11. Pirrotta, V. Vectors for _P_-element transformation in Drosophila. In Vectors: A Survey of Molecular Cloning Vectors and Their Uses (Rodriguez, R. L. and Denhardt, D. T., eds.), Butterworth, Boston, MA, 1988, pp. 437–456.
    Google Scholar
  12. Spradling, A. C. P element-mediated transformation. In Drosophila. A Practical Approach (Roberts, D. B., ed.), IRL (OUP USA), New York, NY, 1986, pp. 175–198.
    Google Scholar
  13. Morris, A. C. Microinjection of mosquito embryos. In The Molecular Biology of Insect Disease Vectors (Crampton, J. M., Beard, C. B., and Louis, C., eds.), Chapman and Hall, London, 1997, pp. 423–429.
    Google Scholar
  14. Anderson, D. T. Development of hemimetabolous insects. In Developmental Systems: Insects (Counce, S. J. and Waddington, C. H., eds.), Academic, London, 1972, pp. 96–162.
    Google Scholar
  15. Anderson, D. T. Development of holometabolous insects. In Developmental Systems: Insects (Counce, S. J. and Waddington, C. H., eds.), Academic, London, 1972, pp. 166–241.
    Google Scholar
  16. Baldarelli, R. M. and Lengyel, J. A. (1990) Transient expression of DNA after ballistic introduction into Drosophila embryos. Nucleic Acids Res. 11, 5903–5904.
    Article Google Scholar
  17. Leopold, R. A., Hughes, K. J., and DeVault, J. D. (1996) Using electroporation and a slot cuvette to deliver plasmid DNA to insect embryos. Genet. Anal. 12, 197–200.
    PubMed CAS Google Scholar
  18. Kamdar, K. P., Wagner, T. N., and Finnerty, V. Electroporation of Drosophila embryos. In Animal Cell Electroporation and Electrofusion Protocols (Nickoloff, J. A., ed.), Humana, Totowa, NJ, 1995, pp. 239–243.
    Chapter Google Scholar
  19. Mialhe, E. and Miller, L. H. (1994) Biolistic techniques for transfection of mosquito embryos (Anopheles gambiae). Biotechniques 16, 924–931.
    PubMed CAS Google Scholar
  20. McCrane, V., Carlson, J. O., Miller, B. R., and Beaty, B. J. (1988) Microinjection of DNA into Aedes triseriatus ova and detection of integration. Amer. J. Trop. Med. Hyg. 39, 502–510.
    Google Scholar
  21. Miller, L. H., Sakai, R. K., Romans, P., Gwadz, R. W., Kantoff, P., and Coon, H. G. (1987) Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science 237, 779–781.
    Article PubMed CAS Google Scholar
  22. Morris, A. C., Eggelston, P., and Crampton, J. M. (1989) Genetic transformation of the mosquito Aedes aegypti by micro-injection of DNA. Med. Vet. Entomology 3, 1–7.
    Article CAS Google Scholar
  23. Atkinson, P. W. and O’Brochta, D. A. Hermes and other hAT elements as gene vectors in insects. In Transgenic Insects: Methods and Applications (Handler, A. M. and James, A. A., eds.), CRC, Boca Raton, FL, 2000, pp. 219–235.
    Chapter Google Scholar
  24. Lampe, D. J., Walden, K. K. O., Sherwood, J. M., and Robertson, H. M. Genetic engineering of insects with mariner transposons. In Transgenic Insects: Methods and Applications (Handler, A. M. and James, A. A., eds.), CRC, Boca Raton, FL, 2000, pp. 237–248.
    Chapter Google Scholar
  25. Loukeris, T. G., Arca, B., Livadaras, I., Dialektaki, G., and Savakis, C. (1995) Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92, 9485–9489.
    Article PubMed CAS Google Scholar
  26. Loukeris, T. G., Livadaras, I., Arca, B., Zabalou, S., and Savakis, C. (1995) Gene transfer into the Medfly, Ceratitis capitata, using a Drosophila hydei transposable element. Science 270, 2002–2005.
    Article PubMed CAS Google Scholar
  27. Fraser, M. J. The TTAA-specific family of transposable element: identification, functional characterization, and utility for transformation of insects. In Transgenic Insects: Methods and Applications (Handler, A. M. and James, A. A., eds.), CRC, Boca Raton, FL, 2000, pp. 249–268.
    Chapter Google Scholar
  28. Sundararajan, P., Atkinson, P. W., and O’Brochta, D. A. (1999) Transposable element interactions in insects: Crossmobilization of hobo and Hermes. Insect Mol. Biol. 8, 359–368.
    Article PubMed CAS Google Scholar
  29. Atkinson, P. W., Warren, W. D., and O’Brochta, D. A. (1993) The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc. Natl. Acad. Sci. USA 90, 9693–9697.
    Article PubMed CAS Google Scholar
  30. Robertson, H. M. (1993) The mariner transposable element is widespread in insects. Nature 362, 241–245.
    Article PubMed CAS Google Scholar
  31. Lohe, A. R. and Hartl, D. L. (1996) Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol. Biol. Evol. 13, 549–555.
    PubMed CAS Google Scholar
  32. Scofield, S. R., English, J. J., and Jones, J. D. G. (1993) High level expression of the Activator transposase gene inhibits the excision of Dissociation in tobacco cotyledons. Cell 75, 507–517.
    Article PubMed CAS Google Scholar
  33. Heinlein, M., Brattig, T., and Kunze, R. (1994) In vivo aggregation of maize Activator (Ac) transposase in nuclei of maize endosperm and Petunia protoplasts. Plant J. 5, 705–714.
    Article PubMed CAS Google Scholar
  34. Horn, C. and Wimmer, E. A. (2000) A versatile vector set for animal transgenesis. Dev. Genes Evol. 210, 630–637.
    Article PubMed CAS Google Scholar
  35. Coates, C. J., Jasinskiene, N., Morgan, D., Tosi, L. R. O., Beverly, S. M., and James, A. A. (2000) Purified mariner (Mos1) transposase catalyzes the integration of marked elements into the germ-line of the yellow fever mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 30, 1003–1008.
    Article PubMed CAS Google Scholar
  36. Catteruccia, F., Nolan, T., Loukeris, T. G., Blass, C., Savakis, C., Kafatos, F. C., et al. (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405, 959–962.
    Article PubMed CAS Google Scholar
  37. Allen, M., Levesque, C. S., O’Brochta, D. A., and Atkinson, P. W. (2001) Stable germline transformation of Culex quinquefasciatus (Diptera: Culicidae) J. Med. Entomol. 38, 701–710.
    Article PubMed CAS Google Scholar
  38. Peloquin, J. J., Thibault, S. T., Schouest, L. P., and Miller, T. A. (1997) Electromechanical microinjection of pink bollworm Pectinophora gossypiella embryos increases survival. Biotechniques 22, 496–499.
    PubMed CAS Google Scholar
  39. Kanda, T. and Tamura, T. (1991) Microinjection method for DNA in early embryos of the silkworm. Bull. Natl. Inst. Seri. Ento. Sci. 2, 31–46.
    Google Scholar
  40. Brown, K. T. and Flaming, D. G. Advanced Micropipette Techniques in Cell Physiology. IBRO Handbook Series: Methods in the Neurosciences, Vol. 9, Wiley and Sons, New York, NY, 1986.
    Google Scholar
  41. Jasinskiene, N., Coates, C. J., Benedict, M. Q., Cornel, A. J., Rafferty, C., Salazar-Rafferty, C., et al. (1998) Stable, transposon mediated transformation of the yellow fever mosquito, Aedes aegypti, using the Hermes element from the housefly. Proc. Natl. Acad. Sci. USA 95, 3743–3747.
    Article PubMed CAS Google Scholar
  42. Coates, C. J., Jasinskiene, N., Pott, G. B., and James, A. A. (1999) Promoter-directed expression of recombinant fire-fly luciferase in the salivary glands of _Hermes_-transformed Aedes aegypti. Gene 226, 317–325.
    Article PubMed CAS Google Scholar
  43. Pinkerton, A. C., Michel, K., O’Brochta, D. A., and Atkinson, P. W. (2000) Green fluorescent protein as a genetic marker in transgenic Aedes aegypti. Insect Mol. Biol. 9, 1–10.
    Article PubMed CAS Google Scholar
  44. Moreira, L. A., Edwards, M. J., Adhami, F., Jasinskiene, N., James, A. A., and Jacobs-Lorena, M. (2000) Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proc. Natl. Acad. Sci. USA 97, 10,895–10,898.
    Article PubMed CAS Google Scholar
  45. Kokoza, V., Ahmed, A., Cho, W. L., Jasinskiene, N., James, A. A., and Raikhel, A. (2000) Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 97, 9144–9149.
    Article PubMed CAS Google Scholar
  46. Michel, K., Staminova, A., Pinkerton, A. C., Franz, G., Robinson, A. S., Gariou-Papalexiou, A., et al. (2001) _Hermes_-mediated germline transformation of the Mediterranean fruit fly Ceratitis capitata. Insect Mol. Biol. 10, 155–162.
    Article PubMed CAS Google Scholar
  47. O’Brochta, D. A., Atkinson, P. W., and Lehane, M. J. (2000) Transformation of Stomoxys calcitrans with a Hermes gene vector. Insect Mol. Biol. 9, 531–538.
    Article Google Scholar
  48. Berghammer, A. J., Klingler, M., and Wimmer, E. A. (1999) A universal marker for transgenic insects. Nature 402, 370.
    Article PubMed CAS Google Scholar
  49. Handler, A. M., McCombs, S. D., Fraser, M. J., and Saul, S. H. (1998) The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc. Natl. Acad. Sci. USA 95, 7520–7525.
    Article PubMed CAS Google Scholar
  50. Handler, A. M. and Harrell, R. A. (2001) Transformation of the Caribbean fruit fly with a piggyBac transposon vector marked with polyubiquitin-regulated GFP. Insect Biochem. Mol. Biol. 31, 199–205.
    Article PubMed CAS Google Scholar
  51. Handler, A. M. and McCombs, S. D. (2000) The piggyBac transposon mediates germ-line transformation of the Oriental fruit fly and closely related elements exist in its genome. Insect Mol. Biol. 9, 605–612.
    Article PubMed CAS Google Scholar
  52. Hediger, M., Niessen, M., Wimmer, E. A., Dubendorfer, A., and Bopp, D. (2001) Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Mol. Biol 10, 113–119.
    Article PubMed CAS Google Scholar
  53. Peloquin, J. J., Thibault, S. T., Staten, R., and Miller, T. A. (2000) Germ-line transformation of pink bollworm (Lepidoptera: Gelechiidae) mediated by the piggyBac transposable element. Insect Mol. Biol. 9, 323–333.
    Article PubMed CAS Google Scholar
  54. Tamura, T., Thibert, C., Royer, C., Kanda, T., Abraham, E., Kamba, M., et al. (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat. Biotechnol. 18, 81–84.
    Article PubMed CAS Google Scholar
  55. Coates, C. J., Jasinskiene, N., Miyashiro, L., and James, A. A. (1998) Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 95, 3748–3751.
    Article PubMed CAS Google Scholar
  56. Christophiles, G. K., Livadaras, I., Savakis, C., and Komitopoulou, K. (2000) Two medfly promoters that have originated by recent gene duplication drive distinct sex, tissue and temporal expression patterns. Genetics 156, 173–182.
    Google Scholar

Download references