Essential polyunsaturated fatty acids and the barrier to the brain (original) (raw)
Auestad N., Korsak R. A., Bergstrom J. D., and Edmond J. (1989) Milk substitutes comparable to rat milk; their preparation, composition and impact on development and metabolism in the artificially reared rat. Br. J. Nutr.61, 495–518. ArticlePubMedCAS Google Scholar
Auestad N., Fisher R., Chiapelli F., Korsak R. A., and Edmond J. (1990) Growth and development of artificially-reared hypoketonemic rat pups. Proc. Soc. Exp. Biol. Med.195, 335–344. PubMedCAS Google Scholar
Bailey E. and Lockwood E. A. (1973) Some aspects of fatty acid oxidation and ketone body formation and utilization during development of the rat. Enzyme15, 239–253. PubMedCAS Google Scholar
Bergersen L., Jâohannsson E., Veruki M. L., Nagelhus E., Halestrap A., Sejersted O. M., and Ottersen O. P. (1999) Cellular and subcellular expression of monocarboxylate transporters in the pigment epithelium and retina of the rat. Neurosci.90, 319–331. ArticleCAS Google Scholar
Bloch K., Berg B. N., and Rittenberg D. (1943) The biological conversion of cholesterol to cholic acid. J. Biol. Chem.149, 511–517. CAS Google Scholar
Bröer S., Bröer A., Schneider H. P., Stegen C., Halestrap A. P., and Deitmer J. W. (1999) Characterization of the high-affinity monocarboxylate transporter _MCT_2 in Xenopus laevis oocytes. Biochem. J.341, 529–535. ArticlePubMed Google Scholar
Chevallier F. (1964) Transferts et synthese du cholesterol chez le rat au cours de sa croissance. Biochim. Biophys. Acta84, 316–339. PubMedCAS Google Scholar
Clarenburg R., Chaikoff I. L., and Morris M. D. (1963) Incorporation of injected cholesterol into the myelinating brain of the 17-day-old rabbit. J. Neurochem.10, 135–143. ArticlePubMedCAS Google Scholar
Cunnane S. C., Williams S. C., Bell J. D., Brookes S., Craig K., Iles R. A., and Crawford M. A. (1994) Utilization of uniformly labeled 13C-polyunsaturated fatty acids in the synthesis of long-chain fatty acids and cholesterol accumulating in the neonatal rat brain. J. Neurochem.62, 2429–2436. ArticlePubMedCAS Google Scholar
Cunnane S. C., Menard C. R., Likhodii S. S., Brenna J. T., and Crawford M. A. (1999) Carbon recycling into de novo lipogenesis is a major pathway in neonatal metabolism of linoleate and alpha-linolenate. Prostaglandins Leukot. Essent. Fatty Acids.60, 387–392. ArticlePubMedCAS Google Scholar
Cunnane S. C., Nadeau C. R., and Likhodii S. S. (2001) NMR and isotope ratio mass spectrometry studies of in vivo uptake and metabolism of polyunsaturates by the developing rat brain. J. Mol. Neurosci.16(2–3), 173–180. ArticlePubMedCAS Google Scholar
Cuzner M. L. and Davison A. N. (1968) The lipid composition of rat brain myelin and subcellular fractions during development. Biochem. J.106, 29–34. PubMedCAS Google Scholar
Davison A. N., Dobbings J., Morgan R. S., and Wright G. P. (1958) The deposition and disposal of [4-14C]cholesterol in the brain of growing chickens. J. Neurochem.3, 89–94. ArticlePubMedCAS Google Scholar
Davison A. N., Morgan R. S., Wajda M., and Wright G. P. (1959) Metabolism of myelin lipids: Incorporation of [3-14C]serine in brain lipids of the developing rabbit and their persistence in the central nervous system. J. Neurochem.4, 360–365. ArticleCAS Google Scholar
Dehouck B., Fenart L., Dehouck M. P., Pierce A., Torpier G., and Cecchelli R. (1997) A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J. Cell Biol.138, 877–889. ArticlePubMedCAS Google Scholar
Dobbing J. (1963) The entry of cholesterol into rat brain during development. J. Neurochem.10, 739–742. ArticleCAS Google Scholar
Drewes L. R. (2001) Molecular architecture of the brain microvasculature: perspective on blood-brain transport. J. Mol. Neurosci.16(2–3), 7–12. Google Scholar
Edmond J. (1974) Ketone bodies as precursors of sterols and fatty acids in the developing rat. J. Biol. Chem.249, 72–80. PubMedCAS Google Scholar
Edmond J., Korsak R. A., Morrow J. W., Torok-Both G., and Catlin D. (1991) Dietary cholesterol and the origin of cholesterol in brain of developing rats. J. Nutr.121, 1323–1330. PubMedCAS Google Scholar
Edmond J., Higa T. A., Korsak R. A., Bergner E. A., and Lee W-N. P. (1998) Fatty acid transport and utilization for the developing brain. J. Neurochem.70, 1227–1234. ArticlePubMedCAS Google Scholar
Gerhart D. Z., Enerson B. E., Zhdankina O. Y., Leino R. L., and Drewes L. R. (1997) Expression of monocarboxylate transporter _MCT_1 by brain endothelium and glia in adult and suckling rats. Am. J. Physiol.273, E207–213. PubMedCAS Google Scholar
Gerhart D. Z., Enerson B. E., Zhdankina O. Y., Leino R. L., and Drewes L. R. (1998) Expression of the monocarboxylate transporter _MCT_2 by rat brain glia. Glia22, 272–281. ArticlePubMedCAS Google Scholar
Gerhart D. Z., Leino R. L., and Drewes L. R. (1999) Distribution of monocarboxylate transporters _MCT_1 and _MCT_2 in rat retina. Neuroscience92, 367–375. ArticlePubMedCAS Google Scholar
Greiner R. C., Winter J., Nathanielsz P. W., and Brenna J. T. (1997) Brain decosahexaenoate accretion in fetal baboons: bioequivalence of dietary alpha-linolenic and docosahexaenoic acids. Ped. Res.42, 826–834. ArticleCAS Google Scholar
Halestrap A. P. and Price N. T. (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J.343, 281–299. ArticlePubMedCAS Google Scholar
Hawkins R. G., Williamson D. H., and Krebs H. A. (1971) Ketone body utilization by adult and suckling rat brain. Biochem. J.122, 13–18. PubMedCAS Google Scholar
Innis S. M. (2000) Essential fatty acids in infant nutrition: lessons and limitations from animal studies in relation to studies on infant fatty acid requirements. Am. J. Clin. Nutr.71, 238S-244S. PubMedCAS Google Scholar
Juel C. and Halestrap A. P. (1999) Lactate transport in skeletal muscle: role and regulation of the monocarboxylate transporter. J. Physiol.517, 633–642. ArticlePubMedCAS Google Scholar
Jurevics H. and Morell P. (1995) Cholesterol for synthesis of myelin is made locally, not imported into brain. J. Neuroch.64, 895–901. ArticleCAS Google Scholar
Jurevics H. A., Kidwai F. Z., and Morell P. (1997) Sources of cholesterol during development of the rat fetus and fetal organs. J. Lipid Res.38, 723–733. PubMedCAS Google Scholar
Koehler-Stec E. M., Simpson I. A., Vannucci S. J., Landschulz K. T., and Landschulz W. H. (1998) Monocarboxylate transporter expression in mouse brain. Am. J. Physiol.275, E516–524. PubMedCAS Google Scholar
Kulmacz R. J., Sivarajan M., and Lands W. E. M. (1986) Measurement of the incorporation of orally administered arachidonic acid into tissue lipids. Lipids21, 21–25. ArticlePubMedCAS Google Scholar
Leino R. L., Gerhardt D. Z., and Drewes L. R. (1999) Monocarboxylate transporter (_MCT_1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study. Brain Res. Dev. Brain Res.113, 47–54. ArticlePubMedCAS Google Scholar
Lopes-Cardozo M. and Klein W. (1984) Ketone body utilization and lipid synthesis by developing rat brain: a comparison between in vivo and in vitro experiments. Neurochem. Int.6, 459–466. ArticleCASPubMed Google Scholar
Lopes-Cardozo M., Koper J. W., Klein W., and Van Golde L. M. G. (1984) Acetoacetate is a precursor for myelinating rat brain and spinal cord. Incorporation of label from [3-14C]acetoacetate, [14C]glucose and 3H2O. Biochim. Biophys. Acta794, 350–352. PubMedCAS Google Scholar
Lucarelli M., Gennarelli M., Cardelli P., Novelli G., Scarpa S., Dallapiccola B., and Strom R. (1997) Expression of receptors for native and chemically modified low-density lipoproteins in brain microvessels. FEBS Lett.401, 53–58. ArticlePubMedCAS Google Scholar
Mâeresse S., Delbart C., Fruchart J. C., and Cecchelli R. (1989) Low-density lipoprotein receptor on endothelium of brain capillaries. J. Neurochem.53, 340–345. ArticleCAS Google Scholar
Magret V., Elkhalil L., Nazih-Sanderson F., Martin F., Bourre J. M., Fruchart J. C., and Delbart C. (1996) Entry of polyunsaturated fatty acids into the brain: Evidence that high-density lipoprotein-induced methyulation of phosphatidylethanolamine and phospholipase A2 are involved. Biochem. J.316, 805–811. PubMedCAS Google Scholar
Marbois B. N., Ajie H. O., Korsak R. A., Sensharma D. K., and Edmond J. (1992) The origin of palmitic acid in brain of the developing rat. Lipids27, 587–592. ArticlePubMedCAS Google Scholar
Martin-Nizard F., Meresse S., Cecchelli R., Fruchart J. C., and Delbart C. (1989) Interactions of high-density lipoprotein 3 with brain capillary endothelial cells. Biochim. et Biophys. Acta.1005, 201–208. CAS Google Scholar
Menard C. R., Goodman K. J., Corso T. N., Brenna J. T., and Cunnane S. C. (1998) Recycling of carbon into lipids synthesized de novo is a quantitatively important pathway of alpha-[U-13C]linolenate utilization in the developing rat brain. J. Neuroch.71, 2151–2158. ArticleCAS Google Scholar
Messer M., Thoman E. B., Terrasa A. G., and Dallman P. R. (1969) Artificial feeding of infant rats by continuous gastric infusion. J. Nutr.98, 404–410. PubMedCAS Google Scholar
Morris M. D. and Chaikoff L. L. (1961) Concerning incorporation of labeled cholesterol, fed to the mothers, into brain cholesterol of 20-day-old suckling rats. J. Neurochem.8, 226–229. ArticlePubMedCAS Google Scholar
Osono Y., Wollett L. A., Herz J., and Dietschy J. M. (1995) Role of the low density lipoprotein receptor in the flux of cholesterol through the plasma and across the tissues of the mouse. J. Clin. Invest.95, 1124–1132. ArticlePubMedCAS Google Scholar
Page M. A., Krebs H. A., and Williamson D. H. (1971) Activities of enzymes of ketone body in brain and other tissues of suckling rats. Biochem. J.121, 49–53. PubMedCAS Google Scholar
Pardridge W. M. and Mietus L. J. (1980) Palmitate and cholesterol transport through the blood-brain barrier. J. Neurochem.34, 463–466. ArticlePubMedCAS Google Scholar
Pawlosky R. J., Ward G., and Salem N., Jr. (1996) Essential fatty acid uptake and metabolism in the developing rodent brain. Lipids31, S103-S107. ArticlePubMedCAS Google Scholar
Pawlosky R. J., Denkins Y., Ward G., and Salem N. Jr. (1997) Retinal and brain accretion of long-chain polyunsaturated fatty acids in developing felines: the effects of corn oil-based maternal diets. Am. J. Clin. Nutr.65, 465–472. PubMedCAS Google Scholar
Peterson N. A. and Chaikoff I. L. (1963) Uptake of intravenously-injected [4-14C]cortisol by adult rat brain. J. Neurochem.10, 17–23. ArticleCAS Google Scholar
Philp N. J., Yoon H., and Grollman E. F. (1998) Monocarboxylate transporter _MCT_1 is located in the apical membrane and _MCT_3 in the basal membrane of rat RPE. Am. J. Physiol.274, R1824-R1828. PubMedCAS Google Scholar
Pilegaard H., Terzis G., Halestrap A. P., and Juel C. (1999) Distribution of the lactate/H+ transporter isoforms _MCT_1 and _MCT_4 in human skeletal muscle. Am. J. Physiol.276, E843-E848. PubMedCAS Google Scholar
Price N.T., Jackson V.N., and Halestrap A.P. (1998) Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem. J.329, 321–328. PubMedCAS Google Scholar
Ritzhaupt A., Wood I. S., Ellis A., Hosie K. B., and Shirazi-Beechey S. P. (1998) Identification and characterization of a monocarboxylate transporter (_MCT_1) in pig and human colon: its potential to transport L-lactate as well as butyrate. J. Physiol.513, 719–732. ArticlePubMedCAS Google Scholar
Schaffer J. E. and Lodish H. F. (1994) Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell. 79, 427–436. ArticlePubMedCAS Google Scholar
Serougne C. and Chevallier F. (1974) Microscopic radioautography of adult rat brain cholesterol. Problem of the blood-brain barrier. Exp. Neurol.44, 1–9. ArticlePubMedCAS Google Scholar
Smart J. L., Massey R. F., Nash S. C., and Tonkiss J. (1987) Effects of early-life undernutrition in artificially reared rats: subsequent body and organ growth. Br. J. Nutr.58, 245–255. ArticlePubMedCAS Google Scholar
Spector A. A. (2001) Plasma free fatty acids and lipoproteins as sources of polyunsaturated fatty acid for the brain. J. Mol. Neurosci.16(2–3), 73–79. Google Scholar
Sperry W. M., Waelsch H., and Stoyanoff V. A. (1940) Lipid metabolism in brain and other tissues of the rat. J. Biol. Chem.135, 281–290. CAS Google Scholar
Stahl A., Hirsch D. J., Gimeno R. E., Punreddy S., Ge P., Watson N., et al. (1999) Identification of the major intestinal fatty acid transport protein. Mol. Cell.4, 299–308. ArticlePubMedCAS Google Scholar
Stockinger W., Hengstchlèager-Ottnad E., Novak S., Matus A., Huttinger M., Bauer J., et al. (1998) The low density lipoprotein receptor gene family. Differential expression of two alpha2-macroglobulin receptors in the brain. J. Biol. Chem.273, 32,213–32,221. ArticleCAS Google Scholar
Turley S. D., Burns D. K., Rosenfeld C. R., and Dietschy J. M. (1996) Brain does not utilize low density lipoprotein-cholesterol during fetal and neonatal development in the sheep. J. Lipid Res.37, 1953–1961. PubMedCAS Google Scholar
Waelsch H., Sperry W. M., and Stoyanoff V. A. (1940a) A study of the synthesis and deposition of lipids in brain and other tissues with deuterium as an indicator. J. Biol. Chem.135, 291–296. CAS Google Scholar
Waelsch H., Sperry W. M., and Stoyanoff V. A. (1940b) Lipid metabolism in brain during myelination. J. Biol. Chem.135, 297–302. CAS Google Scholar
Waelsch H., Sperry W. M., and Stoyanoff V. A. (1941) The influence of growth and myelination on the deposition and metabolism of lipids in the brain. J. Biol. Chem.140, 885–897. CAS Google Scholar
Ward G. R., Huang Y. S., Bobik E., Xing H. C., Mutsaers L., Auestad N., et al. (1998) Long-chain polyunsaturated fatty acid levels in formulae influence deposition of docosahexaenoic acid and arachidonic acid in brain and red blood cells of artificially reared neonatal rats. J. Nutr.128, 2473–2487. PubMedCAS Google Scholar
Ward G. R., Huang Y. S., Xing H. C., Bobik E., Wauben I., Auestad N., et al. (1999) Effects of gamma-linolenic acid and docosahexaenoic acid in formulae on brain fatty acid composition in artificially reared rats. Lipids34, 1057–1063. ArticlePubMed Google Scholar
Webber R. J. and Edmond J. (1979) The in vivo utilization of acetoacetate, D(-)-3-hydroxybutyrate, and glucose for lipid synthesis in brain in the 18-day-old rat. Evidence for an acetyl-CoA bypass for sterol synthesis. J. Biol. Chem.254, 3912–3920. PubMedCAS Google Scholar