GPCR-induced migration of breast carcinoma cells depends on both EGFR signal transactivation and EGFR-independent pathways (original) (raw)
Abstract
The epidermal growth factor receptor (EGFR) plays a key role in the regulation of important cellular processes under normal and pathophysiological conditions such as cancer. In human mammary carcinomas the EGFR is involved in regulating cell growth, survival, migration and metastasis and its activation correlates with the lack of response in hormone therapy. Here, we demonstrate in oestrogen receptor-positive and -negative human breast cancer cells and primary mammary epithelial cells a cross-communication between G protein-coupled receptors (GPCRs) and the EGFR. We present evidence that specific inhibition of ADAM15 or TACE blocks GPCR-induced and proHB-EGF-mediated EGFR tyrosine phosphorylation, downstream mitogenic signalling and cell migration. Notably, activation of the PI3K downstream mediator PKB/Akt by GPCR ligands involves the activity of sphingosine kinase (SPHK) and is independent of EGFR signal transactivation. We conclude that GPCR-induced chemotaxis of breast cancer cells is mediated by EGFR-dependent and -independent signalling pathways, with both parallel pathways having to act in concert to achieve a complete migratory response.
Corresponding author ullrich@biochem.mpg.de
References
Adomeit, A., Graness, A., Gross, S., Seedorf, K., Wetzker, R., and Liebmann, C. (1999). Bradykinin B2 receptor-mediated mitogen-activated protein kinase activation in COS-7 cells requires dual signaling via both protein kinase C pathway and epidermal growth factor receptor transactivation. Mol. Cell. Biol. 19, 5289 –5297.10.1128/MCB.19.8.5289Search in Google Scholar PubMed PubMed Central
Asakura, M., Kitakaze, M., Takashima, S., Liao, Y., Ishikura, F., Yoshinaka, T., Ohmoto, H., Node, K., Yoshino, K., Ishiguro, H., et al. (2002). Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat. Med. 8, 35 –40.10.1038/nm0102-35Search in Google Scholar PubMed
Blobel, C.P. (2005). ADAMs: key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol. 6, 32 –43.10.1038/nrm1548Search in Google Scholar PubMed
Borrell-Pages, M., Rojo, F., Albanell, J., Baselga, J., and Arribas, J. (2003). TACE is required for the activation of the EGFR by TGF-α in tumors. EMBO J. 22, 1114 –1124.10.1093/emboj/cdg111Search in Google Scholar PubMed PubMed Central
Carpenter, G. (1999). Employment of the epidermal growth factor receptor in growth factor-independent signaling pathways. J. Cell Biol. 146, 697 –702.10.1083/jcb.146.4.697Search in Google Scholar PubMed PubMed Central
Das, R., Mahabeleshwar, G.H., and Kundu, G.C. (2004). Osteopontin induces AP-1-mediated secretion of urokinase-type plasminogen activator through c-Src-dependent epidermal growth factor receptor transactivation in breast cancer cells. J. Biol. Chem. 279, 11051 –11064.10.1074/jbc.M310256200Search in Google Scholar PubMed
Daub, H., Wallasch, C., Lankenau, A., Herrlich, A., and Ullrich, A. (1997). Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 16, 7032 –7044.10.1093/emboj/16.23.7032Search in Google Scholar PubMed PubMed Central
Eguchi, S., Numaguchi, K., Iwasaki, H., Matsumoto, T., Yamakawa, T., Utsunomiya, H., Motley, E.D., Kawakatsu, H., Owada, K.M., Hirata, Y., et al. (1998). Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J. Biol. Chem. 273, 8890 –8896.10.1074/jbc.273.15.8890Search in Google Scholar PubMed
Even-Ram, S., Uziely, B., Cohen, P., Grisaru-Granovsky, S., Maoz, M., Ginzburg, Y., Reich, R., Vlodavsky, I., and Bar-Shavit, R. (1998). Thrombin receptor overexpression in malignant and physiological invasion processes. Nat. Med. 4, 909 –914.10.1038/nm0898-909Search in Google Scholar PubMed
Filardo, E.J., Quinn, J.A., Bland, K.I., and Frackelton A.R. Jr. (2000). Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol. 14, 1649 –1660.10.1210/mend.14.10.0532Search in Google Scholar PubMed
Filardo, E.J., Quinn, J.A., Frackelton, A.R. Jr., and Bland, K.I. (2002). Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol. Endocrinol. 16, 70 –84.10.1210/mend.16.1.0758Search in Google Scholar PubMed
Fischer, O.M., Hart, S., Gschwind, A., and Ullrich, A. (2003). EGFR signal transactivation in cancer cells. Biochem. Soc. Trans. 31, 1203 –1208.10.1042/bst0311203Search in Google Scholar PubMed
Fishman, D.A., Liu, Y., Ellerbroek, S.M., and Stack, M.S. (2001). Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res. 61, 3194 –3199.Search in Google Scholar
Goetzl, E.J., Dolezalova, H., Kong, Y., and Zeng, L. (1999a). Dual mechanisms for lysophospholipid induction of proliferation of human breast carcinoma cells. Cancer Res. 59, 4732 –4737.Search in Google Scholar
Goetzl, E.J., Dolezalova, H., Kong, Y., Hu, Y.L., Jaffe, R.B., Kalli, K.R., and Conover, C.A. (1999b). Distinctive expression and functions of the type 4 endothelial differentiation gene-encoded G protein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res. 59, 5370 –5375.Search in Google Scholar
Gschwind, A., Prenzel, N., and Ullrich, A. (2002). Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation. Cancer Res. 62, 6329 –6336.Search in Google Scholar
Gschwind, A., Hart, S., Fischer, O.M., and Ullrich, A. (2003). TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. EMBO J. 22, 2411 –2421.10.1093/emboj/cdg231Search in Google Scholar PubMed PubMed Central
Gutkind, J.S. (1998). Cell growth control by G protein-coupled receptors: from signal transduction to signal integration. Oncogene 17, 1331 –1342.10.1038/sj.onc.1202186Search in Google Scholar PubMed
Hao, L., Du, M., Lopez-Campistrous, A., and Fernandez-Patron, C. (2004). Agonist-induced activation of matrix metalloproteinase-7 promotes vasoconstriction through the epidermal growth factor-receptor pathway. Circ. Res. 94, 68 –76.10.1161/01.RES.0000109413.57726.91Search in Google Scholar PubMed
Harris, A.L., Nicholson, S., Sainsbury, R., Wright, C., and Farndon, J. (1992). Epidermal growth factor receptor and other oncogenes as prognostic markers. J. Natl. Cancer Inst. Monogr. 11, 181 –187.Search in Google Scholar
Hart, S., Fischer, O.M., and Ullrich, A. (2004). Cannabinoids induce cancer cell proliferation via tumor necrosis factor α-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. Cancer Res. 64, 1943 –1950.10.1158/0008-5472.CAN-03-3720Search in Google Scholar PubMed
Izumi, Y., Hirata, M., Hasuwa, H., Iwamoto, R., Umata, T., Miyado, K., Tamai, Y., Kurisaki, T., Sehara-Fujisawa, A., Ohno, S., and Mekada, E. (1998). A metalloprotease-disintegrin, MDC9/meltrin-γ/ADAM9 and PKCδ are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J. 17, 7260 –7272.10.1093/emboj/17.24.7260Search in Google Scholar PubMed PubMed Central
Kamath, L., Meydani, A., Foss, F., and Kuliopulos, A. (2001). Signaling from protease-activated receptor-1 inhibits migration and invasion of breast cancer cells. Cancer Res. 61, 5933 –5940.Search in Google Scholar
Kinsella, T.M. and Nolan., G.P. (1996). Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405 –1413.10.1089/hum.1996.7.12-1405Search in Google Scholar PubMed
Klijn, J.G., Berns, P.M., Schmitz, P.I., and Foekens, J.A. (1992). The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5232 patients. Endocr. Rev. 13, 3 –17.Search in Google Scholar
Landis, S.H., Murray, T., Bolden, S., and Wingo, P.A. (1999). Cancer statistics, 1999. CA Cancer J. Clin. 49, 8 –31.10.3322/canjclin.49.1.8Search in Google Scholar PubMed
Lee, H., Goetzl, E.J., and An, S. (2000). Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. Am. J. Physiol. Cell Physiol. 278, C612 –618.10.1152/ajpcell.2000.278.3.C612Search in Google Scholar PubMed
Lemjabbar, H. and Basbaum, C. (2002). Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat. Med. 8, 41 –46.10.1038/nm0102-41Search in Google Scholar
Marinissen, M.J. and Gutkind, J.S. (2001). G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol. Sci. 22, 368 –376.10.1016/S0165-6147(00)01678-3Search in Google Scholar
Mills, G.B. and Moolenaar, W.H. (2003). The emerging role of lysophosphatidic acid in cancer. Nat. Rev. Cancer 3, 582 –591.10.1038/nrc1143Search in Google Scholar
Navolanic, P.M., Steelman, L.S., and McCubrey, J.A. (2003). EGFR family signaling and its association with breast cancer development and resistance to chemotherapy. Int. J. Oncol. 22, 237 –252.10.3892/ijo.22.2.237Search in Google Scholar
Nicholson, R.I., McClelland, R.A., Gee, J.M., Manning, D.L., Cannon, P., Robertson, J.F., Ellis, I.O., and Blamey, R.W. (1994). Epidermal growth factor receptor expression in breast cancer: association with response to endocrine therapy. Breast Cancer Res. Treat. 29, 117 –125.10.1007/BF00666187Search in Google Scholar
Peschon, J.J., Slack, J.L., Reddy, P., Stocking, K.L., Sunnarborg, S.W., Lee, D.C., Russell, W.E., Castner, B.J., Johnson, R.S., Fitzner, J.N., et al. (1998). An essential role for ectodomain shedding in mammalian development. Science 282, 1281 –1284.10.1126/science.282.5392.1281Search in Google Scholar
Pitson, S.M., Moretti, P.A., Zebol, J.R., Lynn, H.E., Xia, P., Vadas, M.A., and Wattenberg, B.W. (2003). Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22, 5491 –5500.10.1093/emboj/cdg540Search in Google Scholar
Prenzel, N., Fischer, O.M., Streit, S., Hart, S., and Ullrich, A. (2001). The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr. Relat. Cancer 8, 11 –31.10.1677/erc.0.0080011Search in Google Scholar
Pyne, S. and Pyne, N.J. (2000). Sphingosine 1-phosphate signalling in mammalian cells. Biochem. J. 349, 385 –402.10.1042/bj3490385Search in Google Scholar
Salomon, D.S., Bianco, C., and De Santis, M. (1999). Cripto: a novel epidermal growth factor (EGF)-related peptide in mammary gland development and neoplasia. Bioessays 21, 61 –70.10.1002/(SICI)1521-1878(199901)21:1<61::AID-BIES8>3.0.CO;2-HSearch in Google Scholar
Sautin, Y.Y., Crawford, J.M., and Svetlov, S.I. (2001). Enhancement of survival by LPA via Erk1/Erk2 and PI 3-kinase/Akt pathways in a murine hepatocyte cell line. Am. J. Physiol. Cell Physiol. 281, C2010 –2019.10.1152/ajpcell.00077.2001Search in Google Scholar
Schafer, B., Marg, B., Gschwind, A., and Ullrich, A. (2004). Distinct ADAM metalloproteinases regulate G protein-coupled receptor-induced cell proliferation and survival. J. Biol. Chem. 279, 47929 –47938.10.1074/jbc.M400129200Search in Google Scholar
Sturge, J., Hamelin, J., and Jones, G.E. (2002). N-WASP activation by a β1-integrin-dependent mechanism supports PI3K-independent chemotaxis stimulated by urokinase-type plasminogen activator. J. Cell Sci. 115, 699 –711.10.1242/jcs.115.4.699Search in Google Scholar
Sukocheva, O.A., Wang, L., Albanese, N., Pitson, S.M., Vadas, M.A., and Xia, P. (2003). Sphingosine kinase transmits estrogen signaling in human breast cancer cells. Mol. Endocrinol. 17, 2002 –2012.10.1210/me.2003-0119Search in Google Scholar
Sunnarborg, S.W., Hinkle, C.L., Stevenson, M., Russell, W.E., Raska, C.S., Peschon, J.J., Castner, B.J., Gerhart, M.J., Paxton, R.J., Black, R.A., and Lee, D.C. (2002). Tumor necrosis factor-α converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J. Biol. Chem. 277, 12838 –12845.10.1074/jbc.M112050200Search in Google Scholar
Suzuki, M., Raab, G., Moses, M.A., Fernandez, C.A., and Klagsbrun, M. (1997). Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J. Biol. Chem. 272, 31730 –31737.10.1074/jbc.272.50.31730Search in Google Scholar
Tanaka, M., Nanba, D., Mori, S., Shiba, F., Ishiguro, H., Yoshino, K., Matsuura, N., and Higashiyama, S. (2004). ADAM binding protein Eve-1 is required for ectodomain shedding of epidermal growth factor receptor ligands. J. Biol. Chem. 279, 41950 –41959.10.1074/jbc.M400086200Search in Google Scholar
Wang, F., Van Brocklyn, J.R., Hobson, J.P., Movafagh, S., Zukowska-Grojec, Z., Milstien, S., and Spiegel, S. (1999). Sphingosine 1-phosphate stimulates cell migration through a Gi-coupled cell surface receptor. Potential involvement in angiogenesis. J. Biol. Chem. 274, 35343 –35350.10.1074/jbc.274.50.35343Search in Google Scholar
Wells, A. (1999). EGF receptor. Int. J. Biochem. Cell Biol. 31, 637 –643.10.1016/S1357-2725(99)00015-1Search in Google Scholar
Wells, A. (2000). Tumor invasion: role of growth factor-induced cell motility. Adv. Cancer Res. 78, 31 –101.10.1016/S0065-230X(08)61023-4Search in Google Scholar
Yan, Y., Shirakabe, K., and Werb, Z. (2002). The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J. Cell Biol. 158, 221 –226.10.1083/jcb.200112026Search in Google Scholar PubMed PubMed Central
Zwick, E., Daub, H., Aoki, N., Yamaguchi-Aoki, Y., Tinhofer, I., Maly, K., and Ullrich, A. (1997). Critical role of calcium-dependent epidermal growth factor receptor transactivation in PC12 cell membrane depolarization and bradykinin signaling. J. Biol. Chem. 272, 24767 –24770.10.1074/jbc.272.40.24767Search in Google Scholar PubMed
Received: 2005-5-19
Accepted: 2005-7-25
Published Online: 2005-9-9
Published in Print: 2005-9-1
©2005 by Walter de Gruyter Berlin New York