Pharmacokinetics of the Carmustine Implant (original) (raw)
Azizi SA, Miyamoto C. Principles of treatment of malignant gliomas in adults: an overview. J Neurovirol 1998; 4(2): 204–16 ArticlePubMedCAS Google Scholar
Donelli MG, Zucchetti M, Dincalci M. Do anticancer agents reach the tumor target in the human brain. Cancer Chemother Pharmacol 1992; 30(4): 251–60 ArticlePubMedCAS Google Scholar
Petersdorf SH, Livingston RB. High-dose chemotherapy for the treatment of malignant brain tumors. J Neurooncol 1994; 20(2): 155–63 ArticlePubMedCAS Google Scholar
Kochi M, Ushio Y. High-dose chemotherapy with autologous hematopoietic stem-cell rescue for patients with malignant brain tumors. Crit Rev Neurosurg 1999; 9(5): 295–302 ArticlePubMed Google Scholar
Zucchetti M, Boiardi A, Silvani A, et al. Distribution of daunorubicin and daunorubicinol in human glioma tumors after administration of liposomal daunorubicin. Cancer Chemother Pharmacol 1999; 44(2): 173–6 ArticlePubMedCAS Google Scholar
Rapoport SI. Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications. Cell Mol Neurobiol 2000; 20(2): 217–30 ArticlePubMedCAS Google Scholar
Gumerlock MK, Belshe BD, Madsen R, et al. Osmotic blood-brain-barrier disruption and chemotherapy in the treatment of high-grade malignant glioma -patient series and literature review. J Neurooncol 1992; 12(1): 33–46 ArticlePubMedCAS Google Scholar
Giese A, Westphal M. Glioma invasion in the central nervous system. Neurosurgery 1996; 39(2): 235–50 ArticlePubMedCAS Google Scholar
Hochberg FH, Pruitt AA, Beck DO, et al. The rationale and methodology for intra-arterial chemotherapy with BCNU as treatment for glioblastoma. J Neurosurg 1985; 63(6): 876–80 ArticlePubMedCAS Google Scholar
Mahaley MS, Whaley RA, Blue M, et al. Central neurotoxicity following intracarotid BCNU chemotherapy for malignant gliomas. J Neurooncol 1986; 3(4): 297–314 ArticlePubMed Google Scholar
Jacobs A, Clifford P, Kay HEM. The Ommaya reservoir in chemotherapy for malignant disease in the CNS. Clin Oncol 1981; 7(2): 123–9 PubMedCAS Google Scholar
Bakhshi S, North RB. Implantable pumps for drug delivery to the brain. J Neurooncol 1995; 26(2): 133–9 ArticlePubMedCAS Google Scholar
Domb A, Maniar M, Bogdansky S, et al. Drug delivery to the brain using polymers. Crit Rev Ther Drug Carrier Syst 1991; 8(1): 1–17 PubMedCAS Google Scholar
Brem H, Walter KA, Langer R. Polymers as controlled drug delivery devices for the treatment of malignant brain tumors. Eur J Pharm Biopharm 1993; 39(1): 2–7 CAS Google Scholar
Sipos EP, Brem H. New delivery systems for brain-tumor therapy. Neurol Clin 1995; 13(4): 813–25 PubMedCAS Google Scholar
Walter KA, Tamargo RJ, Olivi A, et al. Intratumoral chemotherapy. Neurosurgery 1995; 37(6): 1129–45 Article Google Scholar
Menei P, Venier-Julienne MC, Benoit JP. Drug delivery into the brain using implantable polymeric systems. STP Pharma Sci 1997; 7(1): 53–61 CAS Google Scholar
Englehard HH. The role of interstitial BCNU chemotherapy in the treatment of malignant glioma. Surg Neurol 2000; 53(5): 458–64 Article Google Scholar
Brem H, Gabikian P. Biodegradable polymer implants to treat brain trumors. J Control Release 2001; 74(1–3): 63–7 ArticlePubMedCAS Google Scholar
Brem H, Piantadosi S, Burger PC, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent Gliomas. Lancet 1995; 345(8956): 1008–12 ArticlePubMedCAS Google Scholar
Brem H, Mahaley S, Vick NA, et al. Interstitial chemotherapy with drug polymer implants for the treatment of recurrent Gliomas. J Neurosurg 1991; 74(3): 441–6 ArticlePubMedCAS Google Scholar
Tew K, Colvin OM, Chabner BA. Alkylating agents. In: Chabner BA, Longo DL, editors. Cancer chemotherapy and biotherapy. Chapter 12. Philadelphia (PA): Lippincott-Raven Publishers, 1991: 297–332 Google Scholar
Brem H, Kader A, Epstein JI, et al. Biocompatibility of a biodegradable, controlled-release polymer in the rabbit brain. Sel Cancer Ther 1989; 5(2): 55–65 ArticlePubMedCAS Google Scholar
Tamargo RJ, Epstein JI, Reinhard CS, et al. Brain biocompatibility of a biodegradable, controlled-release polymer in rats. J Biomed Mater Res 1989; 23(2): 253–66 ArticlePubMedCAS Google Scholar
Chasin M, Hollenbeck G, Brem H, et al. Interstitial drug therapy for brain tumors -a case study. Drug Dev Ind Pharm 1990; 16(18): 2579–94 ArticleCAS Google Scholar
Tamargo RJ, Myseros JS, Epstein JI, et al. Interstitial chemotherapy of the 91-gliosarcoma -controlled release polymers for drug delivery in the brain. Cancer Res 1993; 53(2): 329–33 PubMedCAS Google Scholar
Brem H, Tamargo RJ, Olivi A, et al. Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brain. J Neurosurg 1994; 80(2): 283–90 ArticlePubMedCAS Google Scholar
Buahin KG, Brem H. Interstitial chemotherapy of experimental brain tumors: comparison of intratumoral injection versus polymeric controlled release. J Neurooncol 1995; 26(2): 103–10 ArticlePubMedCAS Google Scholar
Sipos EP, Tyler B, Piantadosi S, et al. Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors. Cancer Chemother Pharmacol 1997; 39(5): 383–9 ArticlePubMedCAS Google Scholar
Brem H, Ewend MG, Piantadosi S, et al. The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas: Phase I trial. J Neurooncol 1995; 26(2): 111–23 ArticlePubMedCAS Google Scholar
Valtonen S, Timonen U, Toivanen P, et al. Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 1997; 41(1): 44–8 ArticlePubMedCAS Google Scholar
Subach BR, Witham TF, Kondziolka D, et al. Morbidity and survival after 1,3-bis(2-chloroethyl)-1 nitrosourea wafer implantation for recurrent glioblastoma: a retrospective case matched cohort series. Neurosurgery 1999; 45(1): 17–22 ArticlePubMedCAS Google Scholar
Domb AJ, Langer R. Polyanhydrides: 1. Preparation of highmolecular-weight polyanhydrides. J Polym Sci Pol Chem 1987; 25(12): 3373–86 CAS Google Scholar
Dang WB, Daviau T, Brem H. Morphological characterization of polyanhydride biodegradable implant GLIADEL® during in vitro and in vivo erosion using scanning electron microscopy. Pharm Res 1996; 13(5): 683–91 ArticlePubMedCAS Google Scholar
Domb AJ, Israel ZH, Elmalak O, et al. Preparation and characterization of carmustine loaded polyanhydride wafers for treating brain tumors. Pharm Res 1999; 16(5): 762–5 ArticlePubMedCAS Google Scholar
Leong KW, Brott BC, Langer R. Bioerodible polyanhydrides as drug-carrier matrices: 1. Characterization, degradation, and release characteristics. J Biomed Mater Res 1985; 19(8): 941–55 CAS Google Scholar
Leong KW, Damore P, Marietta M, et al. Bioerodible polyanhydrides as drug-carrier matrices: 2. Biocompatibility and chemical reactivity. J Biomed Mater Res 1986; 20(1): 51–64 ArticleCAS Google Scholar
Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 2000; 33(2): 94–101 ArticlePubMedCAS Google Scholar
Loo TL, Dion RT, Dixon L, et al. The antitumor agent, 1,3-Bis(2-chloroethyl)-1-nitrosourea. J Pharm Sci 1966; 55(5): 492–7 ArticleCAS Google Scholar
Dang WB, Daviau T, Ying P, et al. Effects of GLIADEL® wafer initial molecular weight on the erosion of wafer and release of BCNU. J Control Release 1996; 42(1): 83–92 ArticleCAS Google Scholar
Wu MP, Tamada JA, Brem H, et al. In-vivo versus in-vitro degradation of controlled-release polymers for intracranial surgical therapy. J Biomed Mater Res 1994; 28(3): 387–95 ArticlePubMedCAS Google Scholar
Tamada J, Langer R. The development of polyanhydrides for drug delivery applications. J Biomater Sci Polym Ed 1992; 3(4): 315–53 ArticlePubMedCAS Google Scholar
Langer R. Polymeric delivery systems for controlled drug release. Chem Eng Commun 1980; 6(1–3): 1–48 ArticleCAS Google Scholar
Domb AJ, Rock M, Schwartz J, et al. Metabolic disposition and elimination studies of a radiolabeled biodegradable polymeric implant in the rat brain. Biomaterials 1994; 15(9): 681–8 ArticlePubMedCAS Google Scholar
Domb AJ, Rock M, Perkin C, et al. Excretion of a radiolabeled anticancer biodegradable polymeric implant from the rabbit brain. Biomaterials 1995; 16(14): 1069–72 ArticlePubMedCAS Google Scholar
Grossman SA, Reinhard C, Colvin OM, et al. The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers. J Neurosurg 1992; 76(4): 640–7 ArticlePubMedCAS Google Scholar
Fenstermacher JD, Patlack CS, Blasberg RG. Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc 1974; 33(9): 2070–4 PubMedCAS Google Scholar
Fenstermacher JD, Patlak CS. The movements of water and solutes in the brains of mammals. In: Pappius HM, Feindel W, editors. Dynamics of brain edema. New York: Springer, 1976: 87–94 Chapter Google Scholar
Fenstermacher J, Kaye T. Drug ‘diffusion’ within the brain. Ann N Y Acad Sci 1988; 531: 29–39 ArticlePubMedCAS Google Scholar
Morrison PF, Dedrick RL. Transport of cisplatin in rat brain following microinfusion: an analysis. J Pharm Sci 1986; 75(2): 120–8 ArticlePubMedCAS Google Scholar
Nicholson C. Interaction between diffusion and Michaelis-Menten uptake of dopamine after ionophoresis in striatum. J Biophys 1995; 68(5): 1699–715 ArticleCAS Google Scholar
Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res 1987; 47(12): 3039–51 PubMedCAS Google Scholar
Saltzman WM, Radomsky ML. Drugs released from polymers: diffusion and elimination in brain-tissue. Chem Eng Sci 1991; 46(10): 2429–44 ArticleCAS Google Scholar
Dang WB, Saltzman WM. Dextran retention in the rat brain following release from a polymer implant. Biotechnol Prog 1992; 8(6): 527–32 ArticlePubMedCAS Google Scholar
Mak M, Fung L, Strasser JF, et al. Distribution of drugs following controlled delivery to the brain interstitium. J Neurooncol 1995; 26(2): 91–102 ArticlePubMedCAS Google Scholar
Krewson C, Saltzman WM. Delivery and distribution of recombinant human nerve growth factor in the brain interstitium. Ann Neurol 1995; 38(2): 294–5 Google Scholar
Krewson CE, Klarman ML, Saltzman WM. Distribution of nerve growth-factor following direct delivery to brain interstitium. Brain Res 1995; 680(1–2): 196–206 ArticlePubMedCAS Google Scholar
Mahoney MJ, Saltzman WM. Controlled release of proteins to tissue transplants for the treatment of neurodegenerative disorders. J Pharm Sci 1996; 85(12): 1276–81 ArticlePubMedCAS Google Scholar
Krewson CE, Saltzman WM. Transport and elimination of recombinant human NGF during long-term delivery to the brain. Brain Res 1996; 727(1–2): 169–81 ArticlePubMedCAS Google Scholar
Fung LK, Shin M, Tyler B, et al. Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res 1996; 13(5): 671–82 ArticlePubMedCAS Google Scholar
Strasser JF, Fung LK, Eller S, et al. Distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea and tracers in the rabbit brain after interstitial delivery by biodegradable polymer implants. J Pharmacol Exp Ther 1995; 275(3): 1647–55 PubMedCAS Google Scholar
Fung LK, Ewend MG, Sills A, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res 1998; 58(4): 672–84 PubMedCAS Google Scholar
Reulen HJ, Graham R, Spatz M, et al. Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg 1977; 46(1): 24–35 ArticlePubMedCAS Google Scholar
Kalyanasundaram S, Calhoun VD, Leong KW. A finite element model for predicting the distribution of drugs delivered intracranially to the brain. Am J Physiol Regul Integr Comp Physiol 1997; 42(5): R1810–R21 Google Scholar
Kalyanasundaram S, Leong KW. Intracranial drug delivery systems. STP Pharma Sci 1997; 7(1): 62–70 CAS Google Scholar
Wang CH, Li J, Teo CS, et al. The delivery of BCNU to brain tumors. J Control Release 1999; 61(1–2): 21–41 ArticlePubMedCAS Google Scholar
Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 1990; 9(3): 253–66 ArticlePubMedCAS Google Scholar
Castillo M, Ewend MG, Cush S, et al. Magnetic resonance imaging appearance of carmustine-impregnated implantable wafers. Int J Neurol 1998; 4(5): 380–4 Google Scholar
Teicher BA, Holden SA, Eder JP, et al. Influence of schedule on alkylating agent cyto-toxicity in vitro and in vivo. Cancer Res 1989; 49(21): 5994–8 PubMedCAS Google Scholar