Evolution of animal chemical communication: Insights from non-model species and phylogenetic comparative methods (original) (raw)
Authors
- Simon Baeckens Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk http://orcid.org/0000-0003-2189-9548
DOI:
https://doi.org/10.26496/bjz.2019.31
Keywords:
chemical signals, lizards, phylogenetic comparative methods, pheromones
Abstract
Chemical communication is probably the oldest, most ubiquitous form of information exchange in the natural world, spanning all three domains of life. While excellent sociobiological and behavioral ecological research has been conducted on the form and function of chemical signals in animals, we still know remarkably little on their evolution. Besides, much of our understanding of chemical signal diversity is restricted to insects, since studies on chemical communication in vertebrates are relatively scarce. In this review, I introduce the key concepts of animal communication and expand on the past, present, and future of research in chemical communication. When doing so, I highlight the current gaps in our knowledge on the evolution of the chemical communication system in animals, whilst emphasizing the heavy research bias towards lepidopterans. Here, I detail the benefits of using phylogenetic comparative methods to identify the motors and brakes that guide the evolution of chemical signals and chemical sensory systems. Moreover, I point out that focusing on non-model species in chemical ecology, specifically lizards, can provide valuable insights into how vertebrate chemical signals evolve, and how biological systems responsible for sending and receiving signals co-evolve with signal design. Lastly, I present a case study on lacertid lizards, demonstrating the possibilities of the phylogenetic comparative approach and the use of non-model species to study the evolution of animal chemical communication systems.
References
Aerts P., Herrel A. & De Vree F. (1997). Ecomorphology of the lizard feeding apparatus: a modelling approach. Netherlands Journal of Zoology 48: 1–25. https://doi.org/10.1163/156854298X00183
Alberts A.C. (1992). Constraints of the design of chemical communication systems in terrestrial vertebrates. The American Naturalist 139: 62–89. https://doi.org/10.1086/285305
Allison A. (1952). The morphology of the olfactory system in the vertebrates. Biological Reviews 28: 195–244. https://doi.org/10.1111/j.1469-185X.1953.tb01376.x
Amo L., López P. & Martín J. (2004a). Wall lizards combine chemical and visual cues of ambush snake predators to avoid overestimating risk inside refuges. Animal Behaviour 67 (4): 647–653. https://doi.org/10.1016/j.anbehav.2003.08.005
Amo L., López P. & Martín J. (2004b). Thermal dependence of chemical assessment of predation risk affects the ability of wall lizards, Podarcis muralis, to avoid unsafe refuges. Physiology & Behavior 82 (5): 913–918. https://doi.org/10.1016/j.physbeh.2004.07.013
Amo L., López P. & Martín J. (2004c). Chemosensory recognition and behavioral responses of wall lizards, Podarcis muralis, to scents of snakes that pose different risks. Copeia 2004 (3): 691–696. https://doi.org/10.1643/CE-03-220R1
Apps P.J., Weldon P.J. & Kramer M. (2015). Chemical signals in terrestrial vertebrates: search for design features. Natural Products Reports 32: 1131–1153. https://doi.org/10.1039/c5np00029g
Aragón P., López P. & Martín J. (2001). Effects of conspecific chemical cues on settlement and retreat-site selection of male lizards, Lacerta monticola. Journal of Herpetology 35: 681–684. https://doi.org/10.2307/1565912
Arnold E.N. (1989a). Systematics and adaptive radiation of equatorial African lizards assigned to the genera Adolfus, Bedriagaia, Gastropholis, Holaspis and Lacerta (Reptilia, Lacertidae). Journal of Natural History 23: 525–555. https://doi.org/10.1080/00222938900770311
Arnold E.N. (1989b). Towards a phylogeny and biogeography of the Lacertidae: relationships within an Old-World family of lizards derived from morphology. Bulletin of the British Museum (Natural History) 55: 209–257.
Arnold S. (1983). Morphology, performance and fitness. American Zoologist 23: 347–361. https://doi.org/10.1093/icb/23.2.347
Baeckens S., Edwards S., Huyghe K., & Van Damme R. (2015). Chemical signalling in lizards: an interspecific comparison of femoral pore numbers in Lacertidae. Biological Journal of the Linnean Society 114 (1): 44–57. https://doi.org/10.1111/bij.12414
Baeckens S., Driessens T. & Van Damme R. (2016). Intersexual chemo-sensation in a “visually-oriented” lizard, Anolis sagrei. PeerJ 4: e1874. https://doi.org/10.7717/peerj.1874
Baeckens S., García-Roa R., Martín J. & Van Damme R. (2017a). The Role of Diet in Shaping the Chemical Signal Design of Lacertid Lizards. Journal of Chemical Ecology 43 (9): 902–910. https://doi.org/10.1007/s10886-017-0884-2
Baeckens S., Van Damme R. & Cooper W.E. (2017b). How phylogeny and foraging ecology drive the level of chemosensory exploration in lizards and snakes. Journal of Evolutionary Biology 30 (3): 627–640. https://doi.org/10.1111/jeb.13032
Baeckens S., Herrel A., Broeckhoven C., Vasilopoulou-Kampitsi M., Huyghe K., Goyens J. & Van Damme R. (2017c). Evolutionary morphology of the lizard chemosensory system. Scientific Reports 7: 10141. https://doi.org/10.1038/s41598-017-09415-7
Baeckens S., Martín J., Garcia-Roa R., Pafilis P., Huyghe K. & Van Damme R. (2018a). Environmental conditions shape the chemical signal design of lizards. Functional Ecology 32: 566–580. https://doi.org/10.1111/1365-2435.12984
Baeckens S., Martín J., García-roa R. & Van Damme R. (2018b). Sexual selection and the chemical signal design of lacertid lizards. Zoological Journal of the Linnean Society 183 (2): 445–457. https://doi.org/10.1093/zoolinnean/zlx075
Baeckens S., Llusia D., Garcia-Roa R. & Martín J. (2019) Lizard calls convey honest information on body size and bite performance: a role in predator deterrence? Behavioral Ecology and Sociobiology 73: 87. https://doi.org/10.1007/s00265-019-2695-7
Baluška F. (2009). Signaling and Communication in Plants. Springer, New York.
Barbosa D., Font E., Desfilis E. & Carretero M.A. (2006). Chemically mediated species recognition in closely related Podarcis wall lizards. Journal of Chemical Ecology 32: 1587–1598. https://doi.org/10.1007/s10886-006-9072-5
Barrett P.H., Gautrey P.J., Herbert S., Kohn D. & Smith S. (1987). Charles Darwin’s Notebooks, 1836–1844: Geology, Transmutation of Species, Metaphysical Enquiries. Cambridge University Press, Cambridge.
Barrett R.D.H., Laurent S., Mallarino R., Pfeifer S.P., Xu C.C.Y., Foll M., Wakamatsu K., Duke-Cohan J.S., Jensen J.D. & Hoekstra H.E. (2019). Linking a mutation to survival in wild mice. Science 363: 499–504. https://doi.org/10.1126/science.aav3824
Barth R.H. (1965). Insect mating behavior: endocrine control of a chemical communication system. Science 149: 882–883. https://doi.org/10.1126/science.149.3686.882
Barton R.A., Purvis A., Harvey P.H., Barton R.A., Purvis A. & Harvey P.H. (1995). Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Philosophical Transactions of the Royal Society B 348: 381–392. https://doi.org/10.1098/rstb.1995.0076
Bauwens D. (1999). Life-history variation in lacertid lizards. Natura Croatica 8: 239–252.
Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. (2009). GenBank. Nucleic Acids Res. 37: 26–31. Available from https://www.ncbi.nlm.nih.gov/genbank/ [accessed 26 June 2019].
Bierl B., Beroza M. & Collier C.W. (1970). Potent sex attractant of the gypsy moth: its isolation, identification, and synthesis. Science 170: 87–89. https://doi.org/10.1126/science.170.3953.87
Billen J. (2006). Signal variety and communication in social insects. Proceedings of the Netherlands Entomology Society Meeting 17: 9–25.
Blomquist G.J. & Bagnères A-G. (2010). Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge University Press, Cambridge.
Bohn K.M., Moss C.F. & Wilkinson G.S. (2006). Correlated evolution between hearing sensitivity and social calls in bats. Biology Letters 2: 561–564. https://doi.org/10.1098/rsbl.2006.0501
Bölker M. & Kahmann R. (1993). Sexual pheromones and mating responses in fungi. The Plant Cell 5: 1461–1469. https://doi.org/10.1105/tpc.5.10.1461
Bossert W.H. & Wilson E.O. (1963). The analysis of olfactory communication among animals. Journal of Theoretical Biology 5: 443–469. https://doi.org/10.1016/0022-5193(63)90089-4
Boughman J.W. (2002). How sensory drive can promote speciation. Trends in Ecology and Evolution 17: 571–577. https://doi.org/10.1016/S0169-5347(02)02595-8
Bowmaker J.K. (2008). Evolution of vertebrate visual pigments. Vision Research 48: 2022–2041. https://doi.org/10.1016/j.visres.2008.03.025
Bradbury J.W. & Vehrencamp S.L. (1998). Principles of Animal Communication. Sinauer Assoc. Inc., Sunderland.
Brann J.H. & Fadool D.A. (2006). Vomeronasal sensory neurons from Sternotherus odoratus (stinkpot/musk turtle) respond to chemosignals via the phospholipase C system. Journal of Experimental Biology 209: 1914–1927. https://doi.org/10.1242/jeb.02206
Breithaupt T. & Thiel M. (2011). Chemical Communication in Crustaceans. Springer, New York.
Carazo P., Font E. & Desfilis E. (2007). Chemosensory assessment of rival competitive ability and scent-mark function in a lizard, Podarcis hispanica. Animal Behaviour 74: 895–902. https://doi.org/10.1016/j.anbehav.2007.02.011
Carazo P., Font E. & Desfilis E. (2011). The role of scent marks in female choice of territories and refuges in a lizard (Podarcis hispanica). Journal of Comparative Psychology 125: 362–365. https://doi.org/10.1037/a0023404
Caro S.P., Balthazart J. & Bonadonna F. (2015). The perfume of reproduction in birds: chemosigna-ling in avian social life. Hormones and Behavior 68: 25–42. https://doi.org/10.1016/j.yhbeh.2014.06.001
Carretero M.A. (2004). From set menu to a la carte: linking issues in trophic ecology of Mediterranean lacertids. Italian Journal of Zoology 71: 121–133. https://doi.org/10.1080/11250000409356621
Castilla M.A., Van Damme R. & Bauwens D. (1999). Field body temperatures, mechanisms of thermoregulation and evolution of thermal characteristics in lacertid lizards. Natura Croatia 8: 253–257.
Chen I.-P., Stuart-Fox D., Hugall A.F. & Symonds M.R.E. (2012). Sexual selection and the evolution of complex color patterns in dragon lizards. Evolution 66: 3605–3614. https://doi.org/10.1111/j.1558-5646.2012.01698.x
Cheverud J.M., Dow M.M. & Luetenegger W. (1985). The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism in body weight among primates. Evolution 39: 1335–1351. https://doi.org/10.1111/j.1558-5646.1985.tb05699.x
Clutton-Brock T.H. & Harvey P.H. (1979). Comparison and adaptation. Proceedings of the Royal Society B 205: 547–565. https://doi.org/10.1098/rspb.1979.0084
Clutton-Brock T.H. & Huchard E. (2013). Social competition and selection in males and females. Philosophical Transactions of the Royal Society B 368: 20130074. https://doi.org/10.1098/rstb.2013.0074
Cole C.J. (1966). Femoral glands in lizards: a review. Herpetologica 22: 119–206.
Comfort A. (1971). Likelihood of human pheromones. Nature 230: 432–479. https://doi.org/10.1038/230432a0
Cooper W.E. (1994). Chemical discrimination by tongue-flicking in lizards: a review with hypotheses on its origin and its ecological and phylogenetic relationships. Journal of Chemical Ecology 20: 439-487. https://doi.org/10.1007/BF02064449
Cooper W.E. (1995a). Evolution and function of lingual shape in lizards, with emphasis on elongation, extensibility, and chemical sampling. Journal of Chemical Ecology 21: 477–505. https://doi.org/10.1007/BF02036744
Cooper W.E. (1995b). Foraging mode, prey chemical discrimination, and phylogeny in lizards. Animal Behaviour 50: 973–985. https://doi.org/10.1016/0003-3472(95)80098-0
Cooper W.E. (1996). Variation and evolution of forked tongues in squamate reptiles. Herpetological Natural History 4: 135–150.
Cooper W.E. (1997a). Independent evolution of squamate olfaction and vomerolfaction and vomerolfactory evolution correlated with lingual structure. Amphibia-Reptilia 18: 85–105. https://doi.org/10.1163/156853897X00332
Cooper W.E. (1997b). Correlated evolution of prey chemical discrimination with foraging, lingual morphology and vomeronasal chemoreceptor abundance in lizards. Behavioral Ecology and Sociobiology 41: 257–265. https://doi.org/10.1007/s002650050387
Cooper W.E. (2005). The foraging mode controversy: both continuous variation and clustering of fora-ging movements occur. Journal of Zoology 267 (2): 179–190. https://doi.org/10.1017/S0952836905007375
Cooper W. & Burghardt G. (1990). Vomerolfaction and vomodor. Journal of Chemical Ecology 16: 103–105. https://doi.org/10.1007/BF01021271
Cooper W.E. & Lemos-Espinal J.A. (2001). Coordinated ontogeny of food preference and responses to chemical food stimuli by a lizard, Ctenosaura pectinata. Ethology 107: 639–653. https://doi.org/10.1046/j.1439-0310.2001.00690.x
Cooper W.E. & Pérez-Mellado V. (2002a). Pheromonal discriminations of sex, reproductive condition, and species by the lacertid lizard Podarcis hispanica. Journal of Experimental Biology 292: 523–527. https://doi.org/10.1002/jez.10089
Cooper W.E. & Pérez-Mellado V. (2002b). Responses to food chemicals by two insectivorous and one omnivorous species of lacertid lizards. Netherlands Journal of Zoology 52: 11–28.
Cooper W.E., Baird T.A., Caldwell J.P. & Vitt L.J. (2003). Pursuit deterrent signalling by the Bonaire whiptail lizard Cnemidophorus murinus. Behaviour 141: 297–311. https://doi.org/10.1163/156853904322981860
Cooper N., Thomas G.H. & FitzJohn R.G. (2016). Shedding light on the “dark side” of phylogenetic comparative methods. Methods in Ecology and Evolution 7: 693–699. https://doi.org//10.1111/2041-210X.12533
Daghfous G., Smargiassi M., Libourel P.A., Wattiez R. & Bels V. (2012). The function of oscillatory tongue-flicks in snakes: insights from kinematics of tongue-flicking in the banded water snake (Nerodia fasciata). Chemical Senses 37: 883–896. https://doi.org/10.1093/chemse/bjs072
Darwin C.R. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London.
Darwin C.R. (1871). The Descent of Man and Selection in Relation to Sex. John Murray, London.
Darwin C.R. (1872). The Expression of the Emotions in Man and Animals. John Murray, London.
de Villiers A., Flemming A. & Mouton P. Le F.N. (2015). Generation glands of cordylid lizards: mechanism of secretion transfer to the environment. Amphibia-Reptilia 36: 351–360. https://doi.org/10.1163/15685381-00003011
Díaz J.A. (1995). Prey selection by lacertid lizards: a short review. Herpetological Journal 5: 245–251.
Diaz-Uriarte R. & Garland T. (1996). Testing hypotheses of correlated evolution using phylogenetically independent contrasts: sensitivity to deviations from Brownian motion. Systematic Biology 45: 27–47. https://doi.org/10.1093/sysbio/45.1.27
Dooling R., & Fay R. (2000). Comparative hearing: birds and reptiles. In: Fay R.R. & Popper A.N (eds) Springer Handbook of Auditory Research: 1–380. Springer, New York.
Driessens T., Baeckens S., Balzarolo M., Vanhooydonck B., Huyghe K. & Van Damme R. (2017). Climate-related environmental variation in a visual signalling device: the male and female dewlap in Anolis sagrei. Journal of Evolutionary Biology 30: 1846–1861. https://doi.org/10.1111/jeb.13144
Duvall D. (1979). Western fence lizard (Sceloporus occidentalis): chemical signals, conspecific discriminations and release of a species-typical visual display. Journal of Experimental Zoology 210: 321–326. https://doi.org/10.1002/jez.1402100215
Ebling F.J.G. (1988). Scent glands in mammals: social functions and implications of apocrine gland odours. Journal of Applied Cosmetology 6: 1–14.
Elias D.O., Mason A.C., Maddison W.P. & Hoy R.R. (2003). Seismic signals in a courting male jumping spider (Araneae: Salticidae). Journal of Experimental Biology 206: 4029–4039. https://doi.org/10.1242/jeb.00634
Eisenberg J.F. & Kleiman D.G. (1972). Olfactory communication in mammals. Annual Review of Ecology and Systematics 3: 1–32. https://doi.org/10.1146/annurev.es.03.110172.000245
Eisner T. & Berenbaum M. (2002). Chemical ecology: missed opportunities? Science 295: 5562. https://doi.org/10.1126/science.295.5562.1973
Eisthen H.L. (1992). Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates. Microscopy Research & Technique 23: 1–21. https://doi.org/10.1002/jemt.1070230102
Eisthen H.L. (1997). Evolution of vertebrate olfactory systems. Brain, Behavior and Evolution 50: 222–233. https://doi.org/10.1159/000113336
Eisthen H.L. & Wyatt T.D. (2006). The vomeronasal system and pheromones. Current Biology 16: 1–3. https://doi.org/10.1016/j.cub.2006.01.038
Endler J.A. (1992). Signals, signal conditions, and the direction of evolution. The American Naturalist 139: 125–153. https://doi.org/10.1086/285308
Endler J.A. (1993). Some general comments on the evolution and design of animal communication systems. Philosophical Transactions of the Royal Society B 340: 215–225. https://doi.org/10.1098/rstb.1993.0060
Endler J.A. & Basolo A.L. (1998). Sensory ecology, receiver biases and sexual selection. Trends in Ecology and Evolution 13: 415–420. https://doi.org/10.1016/S0169-5347(98)01471-2
Erdtmann L. & Amézquita A. (2009). Differential evolution of advertisement call traits in dart-poison frogs (Anura: Dendrobatidae). Ethology 115: 801–811. https://doi.org/10.1111/j.1439-0310.2009.01673.x
Espmark Y., Amundsen T. & Rosenqvist G. (2000). Animal Signals: Signalling and Signal Design in Animal Communication. Tapir Academic Press, Trondheim.
Felsenstein J. (1985). Phylogenies and the comparative method. The American Naturalist 125: 3–147. https://doi.org/10.1086/284325
Felsenstein J. (2004). Inferring Phylogenies. Sinauer Associates, Sunderland.
Fernandez A.A. & Morris M.R. (2007). Sexual selection and trichromatic color vision in primates: statistical support for the preexisting-bias hypothesis. The American Naturalist 170: 10–20. https://doi.org/10.1086/518566
Filoramo N.I. & Schwenk K. (2009). The mechanism of chemical delivery to the vomeronasal organs in squamate reptiles: a comparative morphological approach. Journal of Experimental Zoology 34: 20–34. https://doi.org/10.1002/jez.492
Fögen T. (2014). Animal communication. In: Campbell G.L. (ed.) The Oxford Handbook of Animals in Classical Thought and Life: 216–232. Oxford University Press, Oxford.
Font E., Barbosa D., Sampedro C. & Carazo P. (2012a). Social behavior, chemical communication, and adult neurogenesis: studies of scent mark function in Podarcis wall lizards. General and Comparative Endocrinology 177: 9–17. https://doi.org/10.1016/j.ygcen.2012.02.015
Font E., Carazo P., Pérez i de Lanuza G. & Kramer M. (2012b). Predator-elicited foot shakes in wall lizards (Podarcis muralis): evidence for a pursuit-deterrent function. Journal of Comparative Psychology (126): 87–96. https://doi.org/10.1037/a0025446
Fraenkel G.S. (1959). The raison d’être of substances of secondary plant. Science 129: 1466–1470. https://doi.org/10.1126/science.129.3361.1466
Frankenberg E. & Werner Y.L. (1991). Vocal communication in the Reptilia: facts and questions. Acta Zoologica 41: 45–62.
Gabirot M., Castilla A.M., López P. & Martín J. (2010a). Chemosensory species recognition may reduce the frequency of hybridization between native and introduced lizards. Canadian Journal of Zoology 88: 73–80. https://doi.org/10.1139/Z09-120
Gabirot M., Castilla A.M., López P. & Martín J. (2010b). Differences in chemical signals may explain species recognition between an island lizard Podarcis atrata, and related mainland lizards P. hispanica. Biochemical Systematics and Ecology 38: 521–528. https://doi.org/10.1016/j.bse.2010.05.008
Gabirot M. López P. & Martín J. (2013). Female mate choice based on pheromone content may inhibit reproductive isolation between distinct populations of Iberian wall lizards. Current Zoology 59: 210–220. https://doi.org/10.1093/czoolo/59.2.210
Gabirot M., Raux L., Dell’Ariccia G., Bried J., Ramos R., Gonález-Solís J., Buatois B., Crochet P.A. & Bonadonna F. (2016). Chemical labels differ between two closely related shearwater taxa. Journal of Avian Biology 47: 540–551. https://doi.org/10.1111/jav.00853
García-Roa R., Jara M., Baeckens S., López P., Van Damme R., Martín J. & Pincheira-Donoso D. (2017). Macroevolutionary diversification of glands for chemical communication in squamate reptiles. Scientific Reports 7: 9288. https://doi.org/10.1038/s41598-017-09083-7
Gauthier J.A, Kearney M., Maisano J.A., Rieppel O. & Behlke A.D.B. (2012). Assembling the Squamate Tree of Life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History 53: 3–308. https://doi.org/10.3374/014.053.0101
Garamszegi L.Z. (2014). Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology: Concepts and Practice. Springer, Heidelberg.
Garamszegi L.Z., Eens M., Erritzøe J. & Møller A.P. (2005). Sexually size dimorphic brains and song complexity in passerine birds. Behavioral Ecology 16: 335–345. https://doi.org/10.1093/beheco/arh167
García-Muñoz E. & Sillero N. (2010). Two new types of noose for capturing herps. Acta Herpetologica 5: 259–263. https://doi.org/10.13128/Acta_Herpetol-9033
Garland T., Harvey P. & Ives A. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41: 18–32. https://doi.org/10.1093/sysbio/41.1.18
Gillies M. (1980). The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bulletin of Entomological Research 70: 525–532. https://doi.org/10.1017/S0007485300007811
Gittleman J.L. (1991). Carnivore olfactory bulb size: allometry, phylogeny and ecology. Journal of Zoology 225: 253–272. https://doi.org/10.1111/j.1469-7998.1991.tb03815.x
Goolsby E.W. (2015). Phylogenetic comparative methods for evaluating the evolutionary history of function-valued traits. Systematic Biology 64: 568–578. https://doi.org/10.1093/sysbio/syv012
Gould S. & Lewontin R. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptionist programme. Proceedings of the Royal Society B 205: 581–598. https://doi.org/10.1098/rspb.1979.0086
Grafen A. (1990). Biological signals as handicaps. Journal of Theoretical Biology 144: 517–546. https://doi.org/10.1016/S0022-5193(05)80088-8
Guilford T. & Dawkins M.S. (1991). Receiver psychology and the evolution of animal signals. Animal Behaviour (42): 1–14. https://doi.org/10.1016/S0003-3472(05)80600-1
Guilford T. & Dawkins M.S. (1993). Receiver psychology and the design of animal signals. Trends in Neurosciences 16: 430–436. https://doi.org/10.1016/0166-2236(93)90068-W
Halpern M. (1987). The organization and function of the vomeronasal system. Annual Review of Neuroscience 10: 325–362. https://doi.org/10.1146/annurev.ne.10.030187.001545
Halpern M. (1992). Nasal chemical senses in reptiles: structure and function. In: Gans C. & Crews D. (eds) Biology of the Reptilia. Volume 18, Physiology E: 424–532. University of Chicago, Chicago.
Halpern M. & Martínez-Marcos A. (2003). Structure and function of the vomeronasal system: an update. Progress in Neurobiology 70: 245–318. https://doi.org/10.1016/S0301-0082(03)00103-5
Harmon L.J. (2018). Phylogenetic Comparative Methods: Learning from Trees. CreateSpace Independent Publishing Platform.
Harrington F.H. & Mech L.D. (1979). Wolf howling and its role in territory maintenance. Behaviour 68 (3–4): 207–249. https://doi.org/10.1163/156853979X00322
Harris D.J., Carranza S., Arnold E.N., Pinho C. & Ferrand N. (2002). Complex biogeographical distribution of genetic variation within Podarcis wall lizards across the Strait of Gibraltar. Journal of Biogeography 29: 1257–1262. https://doi.org/10.1046/j.1365-2699.2002.00744.x
Hartmann T. (2008). The lost origin of chemical ecology in the late 19th century. Proceedings of the National Academy of Sciences 105: 4541–4546. https://doi.org/10.1073/pnas.0709231105
Harvey P.H. & Pagel M.D. (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.
Harvey P.H. & Purvis A. (1991). Comparative methods for explaining adaptations. Nature 351: 619–624. https://doi.org/10.1038/351619a0
Harvey S., Jemiolo B. & Novotny M. (1989). Pattern of volatile compounds in dominant and subordinate male mouse urine. Journal of Chemical Ecology 15: 2061–2072. https://doi.org/10.1007/BF01207438
Hebets E.A. & Papaj D.R. (2005). Complex signal function: developing a framework of testable hypotheses. Behavioral Ecology and Sociobiology 57: 197–214. https://doi.org/10.1007/s00265-004-0865-7
Herrel A., Van Damme R., Vanhooydonck B. & De Vree F. (2001). The implications of bite performance for diet in two species of lacertid lizards. Canadian Journal of Zoology 670: 662–670. https://doi.org/10.1139/cjz-79-4-662
Herrel A., Vanhooydonck B. & Van Damme R. (2004). Omnivory in lacertid lizards: adaptive evolution or constraint? Journal of Evolutionary Biology 17: 974–984. https://doi.org/10.1111/j.1420-9101.2004.00758.x
Herrel A., Schaerlaeken V., Meyers J.J., Metzger K.A. & Ross C.F. (2007a). The evolution of cranial design and performance in squamates: consequences of skull-bone reduction on feeding behavior. Integrative and Comparative Biology 47: 107–117. https://doi.org/10.1093/icb/icm014
Herrel A., James R.S. & Van Damme R. (2007b). Fight versus flight: physiological basis for temperature-dependent behavioral shifts in lizards. Journal of Experimental Biology 210: 1762–1767. https://doi.org/10.1242/jeb.003426
Hildebrand J.G. & Shepherd G.M. (1997). Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annual Review of Neurosciences 20: 595–631. https://doi.org/10.1146/annurev.neuro.20.1.595
Huelsenbeck J.P. & Bollback J.P. (2001). Empirical and hierarchical Bayesian estimation of ancestral states. Systematic Biology 50: 351–366. https://doi.org/10.1080/106351501300317978
Huelsenbeck J.P., Rannala B. & Masly J.P. (2000). Accommodating phylogenetic uncertainty in evolutionary studies. Science 288: 2349–50. https://doi.org/10.1126/science.288.5475.2349
Huey R.B. & Pianka E.R. (1977). Natural selection for juvenile lizards mimicking noxious beetles. Science 195: 201–203. https://doi.org/10.1126/science.831272
Huey R.B. & Pianka E.R. (1981). Ecological consequences of foraging mode. Ecology 62: 991–999. https://doi.org/10.2307/1936998
Hughes N.K., Kelley J.L., Banks P.B. & Grether G. (2012). Dangerous liaisons: the predation risks of receiving social signals. Ecology Letters 15: 1326–1339. https://doi.org/10.1111/j.1461-0248.2012.01856.x
Hunt J., Snook R.R., Mitchell C., Crudgington H.S. & Moore A.J. (2012). Sexual selection and experimental evolution of chemical signals in Drosophila pseudoobscura. Journal of Evolutionary Biology 25: 2232–2241. https://doi.org/10.1111/j.1420-9101.2012.02603.x
Huyghe K., Vanhooydonck B., Herrel A., Tadic Z. & Van Damme R. (2007). Morphology, performance, behavior and ecology of three color morphs in males of the lizard Podarcis melisellensis. Integrative and Comparative Biology 47: 211–20. https://doi.org/10.1093/icb/icm043
Ibáñez A., Marzal A., López P. & Martín J. (2014). Chemosensory assessment of rival body size is based on chemosignal concentration in male Spanish terrapins. Behavioral Ecology Sociobiology 68: 2005–2012. https://doi.org/10.1007/s00265-014-1806-8
Irschick D.J. & Losos J.B. (1998). A comparative analysis of the ecological significance of maximal locomotor performance in Caribbean Anolis lizards. Evolution 52: 219–226. https://doi.org/10.2307/2410937
Jacobson M., Redfern R.E., Jones W.A. & Aldridge M.H. (1970). Sex pheromones of the southern armyworm moth: isolation, identification, and synthesis. Science 170: 542–544. https://doi.org/10.1126/science.170.3957.542
Johnstone R.A. (2000). Conflicts of interest in signal evolution. In: Espmark Y., Amundsen T. & Rosenqvist G. (eds) Animal Signals: Signalling and Signal Design in Animal Communication: 465–485. Tapir Academic Press, Trondheim.
Kaupp U.B. (2010). Olfactory signalling in vertebrates and insects: differences and commonalities. Nature Reviews Neuroscience 11: 188–200. https://doi.org/10.1038/nrn2789
Keverne E.B. (1999). The vomeronasal organ. Science 286: 716. https://doi.org/10.1126/science.286.5440.716
Khannoon E.R., Breithaupt T., El-Gendy A. & Hardege J.D. (2010). Sexual differences in behavioral response to femoral gland pheromones of Acanthodactylus boskianus. Herpetological Journal 20: 225–229.
Khannoon E.R., El-Gendy A. & Hardege J.D. (2011). Scent marking pheromones in lizards: cholesterol and long chain alcohols elicit avoidance and aggression in male Acanthodactylus boskianus (Squamata: Lacertidae). Chemoecology 21: 14–149. https://doi.org/10.1007/s00049-011-0076-4
Kikuchi D.W. & Pfennig D.W. (2010). Predator cognition permits imperfect coral snake mimicry. The American Naturalist 176: 830–834. https://doi.org/10.1086/657041
Kikuyama S., Toyoda F., Ohmiya Y., Matsuda K., Tanaka S. & Hayashi H. (1995). Sodefrin: a female-attracting peptide pheromone in newt cloacal glands. Science 267: 1643–1645. https://doi.org/10.1126/science.7886452
Kopena R., Martín J., López P. & Herczeg G. (2011). Vitamin E supplementation increases the attractiveness of males’ scent for female European green lizards. PloS ONE 6: e19410. https://doi.org/10.1371/journal.pone.0019410
Kopena R., López P. & Martín J. (2014). Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: an experimental test. Behavioral Ecology and Sociobiology 68: 571–581. https://doi.org/10.1007/s00265-013-1672-9
Krieger J. & Breer H. (1999). Olfactory reception in invertebrates. Science 286: 720–723. https://doi.org/10.1126/science.286.5440.720
Labra A., Silva G., Norambuena F., Velásquez N. & Penna M. (2013). Acoustic features of the weeping lizard’s distress call. Copeia: 206–212. https://doi.org/10.1643/CE-12-026
Lapiedra O., Schoener T.W., Leal M., Losos J.B., & Kolbe J.J. (2018). Predator-driven natural selection on risk-taking behavior in anole lizards. Science 1020: 1017–1020. https://doi.org/10.1126/science.aap9289
Lazić M.M., Carretero M.A., Crnobrnja-Isailović J. & Kaliontzopoulou A. (2015). Effects of environmental disturbance on phenotypic variation: an integrated assessment of canalization, developmental stability, modularity, and allometry in lizard head shape. The American Naturalist 185: 44–58. https://doi.org/10.1086/679011
LeMaster M.P. & Mason R.T. (2001). Evidence for a female sex pheromone mediating male trailing behavior in the red-sided garter snake, Thamnophis sirtalis parietalis. Chemoecology 11: 149–152. https://doi.org/10.1007/PL00001845
López P. & Martín J. (2002). Chemical rival recognition decreases aggression levels in male Iberian wall lizards, Podarcis hispanica. Behavioral Ecology and Sociobiology 51: 461–465. https://doi.org/10.1007/s00265-001-0447-x
Losos J.B. & Miles D.B. (1994). Adaptation, constraint, and the comparative method: phylogenetic issues and methods. In: Wainwright P.C. & Reilly S. (eds) Ecological Morphology: Integrative Organismal Biology: 60–98. University of Chicago Press, Chicago.
Losos J.B. & Ricklefs R.E. (2009). Adaptation and diversification on islands. Nature 457: 830–836. https://doi.org/10.1038/nature07893
Losos J.B., Jackman T.R., Larson A., de Queiroz K. & Rodriguez-Schettino L. (1998). Contingency and determinism in replicated adaptive radiations of island lizards. Science (79) 2115–2118. https://doi.org/10.1126/science.279.5359.2115
Losos J.B., Hillis D.M. & Greene H.W. (2012). Who speaks with a forked tongue ? Science 338: 1428–1429. https://doi.org/10.1126/science.1232455
Lucas C. (1944). Excretions, ecology and evolution. Nature 25: 378–379. https://doi.org/10.1038/153378b0
MacDonald D.W., Müller-Schwarze D. & Natynczuk S.E. (1990). Chemical Signals in Verte-brates 5. Oxford University Press, Oxford.
Maex M., Van Bocxlaer I., Mortier A., Proost P. & Bossuyt F. (2016). Courtship pheromone use in a model urodele, the Mexican axolotl (Ambystoma mexicanum). Scientific Reports 6: 20184. https://doi.org/10.1038/srep20184
Maddison W.P., Midford P.E. & Otto S.P. (2007). Estimating a binary character’s effect on speciation and extinction. Systematic Biology 56: 701–10. https://doi.org/10.1080/10635150701607033
Madison D.M. (1977). Chemical communication in amphibians and reptiles. In: Müller-Schwarze D. & Mozell M.M. (eds) Chemical Signals in Vertebrates. Volume 1: 135–168. Plenum, New York.
Mangiacotti M., Gaggiani S., Coladonato A.J., Scali S., Zuffi M.A.L. & Sacchi R. (2019). First experimental evidence that proteins from femoral glands convey identity-related information in a lizard. Acta Ethologica 22: 57–65. https://doi.org/10.1007/s10211-018-00307-1
Martín J. & López P. (2012). Supplementation of male pheromone on rock substrates attracts female rock lizards to the territories of males: a field experiment. PloS ONE 7: e30108. https://doi.org/10.1371/journal.pone.0030108
Martín J. & López P. (2013). Responses of female rock lizards to multiple scent marks of males: effects of male age, male density and scent over-marking. Behavioral Processes 94: 109–114. https://doi.org/10.1016/j.beproc.2013.01.002
Martín J. & López P. (2014). Pheromones and chemical communication in lizards. In: Rheubert J.L., Siegen D.S. & Trauth S.E. (eds) The Reproductive Biology and Phylogeny of Lizards and Tuatara: 43–77. Academic Press, Boca Raton.
Martín J. & López P. (2015). Condition-dependent chemosignals in reproductive behavior of lizards. Hormones and Behavior 68: 14–24. https://doi.org/10.1016/j.yhbeh.2014.06.009
Martín J., Ortega J. & López P. (2015). Experience may allow increasing accuracy of the innate chemosensory recognition of snake predators by Iberian wall lizards. Behavioral Ecology and Sociobiology 69: 1565-1572. https://doi.org/10.1007/s00265-015-1968-z
Martin M., Meylan S., Perret S. & Le Galliard J.F. (2015). UV coloration influences spatial dominance but not agonistic behaviors in male wall lizards. Behavioral Ecology and Sociobiology 69: 1483–1491. https://doi.org/10.1007/s00265-015-1960-7
Mason R.T. (1992). Reptilian pheromones. In: Gans C. & Crews D. (eds) Biology of the Reptilia, Volume 18, Physiology E: Hormones, Brain, and Behavior: 114–228. University of Chicago Press, Chicago
Mason M.J. & Narins P.M. (2002). Seismic sensitivity in the desert golden mole (Eremitalpa granti): a review. Journal of Comparative Psychology 116: 158–163. https://doi.org/10.1037/0735-7036.116.2.158
Mason R.T. & Parker M.R. (2010). Social behavior and pheromonal communication in reptiles. Journal of Comparative Physiology 196: 729–49. https://doi.org/10.1007/s00359-010-0551-3
Mason R.T., Fales H.M., Jones T.H., Pannell L.K., Chinn J.W. & Crews D. (1989). Sex pheromones in snakes. Science 245: 290–293. https://doi.org/10.1126/science.2749261
Mayerl C., Baeckens S. & Van Damme R. (2015). Evolution and role of the follicular epidermal gland system in non-ophidian squamates. Amphibia-Reptilia 36: 185–206. https://doi.org/10.1163/15685381-00002995
Maynard-Smith J. & Harper D. (2003). Animal Signals. Oxford University Press, New York.
Meiri S. (2007). Size evolution in island lizards. Global Ecology and Biogeography 16: 702–708. https://doi.org/10.1111/j.1466-8238.2007.00327.x
Mesquita D.O., Costa G.C., Colli G.R., Costa T.B., Shepard D.B., Vitt L.J. & Pianka E.R. (2016a). Life-history patterns of lizards of the world. The American Naturalist 187: 689–705. https://doi.org/10.1086/686055
Mesquita D.O., Faria R.G., Colli G.R., Vitt L.J. & Pianka E.R. (2016b). Lizard life-history strategies. Austral Ecology 41: 1–5. https://doi.org/10.1111/aec.12276
Miles D.B. (1993). Historical perspectives in ecology and evolutionary biology: the use of phylogenetic comparative analyses. Annual Review of Ecology and Systematics 24: 587–619. https://doi.org/10.1146/annurev.ecolsys.24.1.587
Miller J.R., Baker T.C., Carde R.T. & Roelofs W.L. (1976). Reinvestigation of oak leaf roller sex pheromone components and the hypothesis that they vary with diet. Science 192: 140–143. https://doi.org/10.1126/science.1257758
Montealegre-Z F. (2009). Scale effects and constraints for sound production in katydids (Orthoptera: Tettigoniidae): correlated evolution between morphology and signal parameters. Journal of Evolutionary Biology 22: 355–366. https://doi.org/10.1111/j.1420-9101.2008.01652.x
Morales B. & Bacigalupo J. (1996). Chemical reception in vertebrate olfaction: evidence for multiple transduction pathways. Biological Research 29: 333–341.
Moulton D. (1968). Communication by chemical signals. Science 162: 1176–1180. https://doi.org/10.1126/science.162.3858.1176
Müller-Schwarze D. (2006). Chemical Signals in Vertebrates. Cambridge University Press, Cambridge.
Müller-Schwarze D. & Silverstein R.M. (1980). Chemical Signals: Vertebrates and Aquatic Invertebrates. Plenum Press, New York.
Mykytowicz R. & Goodrich B.S. (1974). Skin glands as organs of communication in mammals. The Journal of Investigative Dermatology 62: 124–131. https://doi.org/10.1111/1523-1747.ep12676776
Nee S., May R.M. & Harvey P.H. (1994). The reconstructed evolutionary process. Philosophical Transactions of the Royal Society B 344: 305–311. https://doi.org/10.1098/Rstb.1994.0068
Nicholson K.E., Harmon L.J. & Losos J.B. (2007). Evolution of Anolis lizard dewlap diversity. PLoS ONE 2: 1–12. https://doi.org/10.1371/journal.pone.0000274
Novosolov M., Rodda G.H., Feldman A., Kadison A.E., Dor R. & Meiri S. (2016). Power in numbers: the evolutionary drivers of high population density in insular lizards. Global Ecology and Biogeography 25: 87–95. https://doi.org/10.1111/geb.12390
O’Connell-Rodwell C.E. (2007). Keeping an “ear” to the ground: seismic communication in elephants. Physiology 22: 287–294. https://doi.org/10.1152/physiol.00008.2007
O’Meara B.C. (2012). Evolutionary inferences from phylogenies: a review of methods. Annual Review of Ecology, Evolution and Systematics 43: 267–285. https://doi.org/10.1146/annurev-ecolsys-110411-160331
O’Meara B.C., Graham K.L., Pellis S.M. & Burghardt G.M. (2015). Evolutionary models for the retention of adult-adult social play in primates: the roles of diet and other factors associated with resource acquisition. Adaptive Behavior 23: 381–391. https://doi.org/10.1177/1059712315611733
Ord T.J. & Martins E.P. (2006). Tracing the origins of signal diversity in anole lizards: phylogenetic approaches to inferring the evolution of complex behaviour. Animal Behaviour 71: 1411–1429. https://doi.org/10.1016/j.anbehav.2005.12.003
Pafilis P., Foufopoulos J., Poulakakis N., Lymberakis P. & Valakos E.D. (2009). Tail shedding in island lizards (Lacertidae, Reptilia): decline of antipredator defenses in relaxed predation environments. Evolution 63: 1262–1278. https://doi.org/10.1111/j.1558-5646.2009.00635.x
Pagel M. (2014). Foreword. In: Garamszegi L.Z. (ed.) Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology: Concepts and Practice: vii–viii. Springer, Heidelberg.
Pagel M., Meade A. & Barker D. (2004). Bayesian estimation of ancestral character states on phylogenies. Systematic Biology 53: 673–684. https://doi.org/10.1080/10635150490522232
Partan S.R. & Marler P. (1999). Communication goes multimodal. Science 283: 1272–1273. https://doi.org/10.1126/science.283.5406.1272
Peake T.M. (2005). Eavesdropping in communication networks. In: McGregor P.K. (ed.) Animal Communication Networks: 13–37. Cambridge University Press, Cambridge.
Pérez i de Lanuza G. & Font E. (2010). Lizard blues: blue body colouration and ultraviolet polychromatism in lacertids. Revista Española de Herpetología 24: 67–84.
Pérez i de Lanuza G. & Font E. (2014). Ultraviolet vision in lacertid lizards: evidence from retinal structure, eye transmittance, SWS1 visual pigment genes and behaviour. Journal of Experimental Biology 217: 2899–909. https://doi.org/10.1242/jeb.104281
Pérez i de Lanuza G. & Font E. (2015). Differences in conspicuousness between alternative color morphs in a polychromatic lizard. Behavioral Ecology 26: 1432–1446. https://doi.org/10.1093/beheco/arv075
Pérez i de Lanuza G. & Font E. (2016). The evolution of colour pattern complexity: selection for conspicuousness favours contrasting within-body colour combinations in lizards. Journal of Evolutionary Biology 29: 942–951. https://doi.org/10.1111/jeb.12835
Pérez i de Lanuza G., Font E. & Monterde J.L. (2013). Using visual modelling to study the evolution of lizard coloration: sexual selection drives the evolution of sexual dichromatism in lacertids. Journal of Evolutionary Biology 26: 1826–1835. https://doi.org/10.1111/jeb.12185
Pérez-Mellado V. & Traveset A. (1999). Relationships between plants and Mediterranean lizards. Natura Croatia 8: 275–285.
Perry G. (1999). The evolution of search modes: ecological versus phylogenetic perspectives. The American Naturalist 153: 98–109. https://doi.org/10.1086/303145
Perry G., Lampl I., Lerner A., Rothenstein D., Shani E. & Sivan N. (1990). Foraging mode in lacertid lizards: variation and correlates. Amphibia-Reptilia 11: 373–384. https://doi.org/10.1163/156853890X00069
Pianka E.R. (1971). Lizard species density in the Kalahari desert. Ecology 53: 1024–1029. https://doi.org/10.2307/1933808
Pianka E.R. (1994). The Lizard Man Speaks. University of Texas Press, Austin.
Pincheira-Donoso D., Hodgson D.J. & Tregenza T. (2008). Comparative evidence for strong phylogenetic inertia in precloacal signalling glands in a species-rich lizard clade. Evolutionary Ecology Research 10: 11–28.
Pomiankowski A. (1988). The evolution of female mating preferences for male genetic quality. In: Harvey P.H. & Partridge L. (eds) Oxford Surveys in Evolutionary Biology: 136–184. Oxford University Press, New York.
Raina A.K., Jaffe H., Kempe T.G., Keim P., Blacher R.W., Fales H.M., Riley C.T., Klun J.A., Ridgeway R.L. & Hayes D.K. (1989). Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science 244: 796–798. https://doi.org/10.1126/science.244.4906.796
Regnier F.E. & Law, J.H. (1968). Insect pheromones. Journal of Lipid Research 9: 541–551.
Regnier F.E. & Wilson E. (1971). Chemical communication and “propaganda ” in slave-maker ants. Science 172: 267–269. https://doi.org/10.1126/science.172.3980.267
Revell L.J., Harmon L. & Collar D. (2008). Phylogenetic signal, evolutionary process, and rate. Systematic Biology 57: 591–601. https://doi.org/10.1080/10635150802302427
Ronacher B., Wohlgemuth S., Vogel A. & Krahe R. (2008). Discrimination of acoustic communication signals by grasshoppers (Chorthippus biguttulus): temporal resolution, temporal integration, and the impact of intrinsic noise. Journal of Comparative Psychology 122: 252–63. https://doi.org/10.1037/0735-7036.122.3.252
Rowe C. (1999). Receiver psychology and the evolution of multicomponent signals. Animal Behavior 58: 921–931. https://doi.org/10.1006/anbe.1999.1242
Rowe C. & Guilford T. (1996). Hidden colour aversions in domestic chicks triggered by pyrazine odours of insect warning displays. Nature 383: 520–522. https://doi.org/10.1038/383520a0
Ryan M.J. & Rand A.S. (1995). Female responses to ancestral advertisement calls in tungara frogs. Science 269: 390–392. https://doi.org/10.1126/science.269.5222.390
Ryan M.J., Fox J., Wilczynski W. & Rand A. (1990). Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature 343: 66–67. https://doi.org/10.1038/343066a0
Sayers E.W., Barrett T., Benson D.A., Bryant S.H., Canese K., Chetvernin V., Church D.M., DiCuccio M., Edgar R., Feolo S.F.M., Geer L.Y., Helmberg W., Kapustin Y., Landsman D., Lipman D.J., Madden T.L., Maglott D.R., Miller V., Mizrachi I., Ostell J., Pruitt K.D., Schuler G.D., Sequeira E., Sherry S.T., Shumway M., Sirotkin K., Souvorov A., Starchenko G., Tatusova T.A., Wagner L., Yaschenko E. & Ye J. (2009). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 37: 5–15. https://doi.org/10.1093/nar/gkn741
Scheers H. & Van Damme R. (2002). Micro-scale differences in thermal habitat quality and a possible case of evolutionary flexibility in the thermal physiology of lacertid lizards. Oecologia 132: 323–331. https://doi.org/10.1007/s00442-002-0970-0
Schluessel V., Bennett M.B., Bleckmann H., Blomberg S. & Collin S.P. (2008). Morphometric and ultrastructural comparison of the olfactory system in elasmobranchs: the significance of structure-function relationships based on phylogeny and ecology. Journal of Morphology 269: 1365–1386. https://doi.org/10.1002/jmor.10661
Schnitzler H.U., Moss C.F. & Denzinger A. (2003). From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution 18: 386–394. https://doi.org/10.1016/S0169-5347(03)00185-X
Scholes E. (2008). Evolution of the courtship phenotype in the bird of paradise genus Parotia (Aves: Paradisaeidae): homology, phylogeny, and modularity. Biological Journal of the Linnean Society 94: 491–504. https://doi.org/10.1111/j.1095-8312.2008.01012.x
Schulz S. (2005). Topics in Current Chemistry, Volume 240: The Chemistry of Pheromones and other Semiochemicals II. Springer, New York.
Schwenk K. (1993). The evolution of chemoreception in squamate reptiles: a phylogenetic approach. Brain, Behavior and Evolution 41: 124–137. https://doi.org/10.1159/000113830
Schwenk K. (1994a). Why snakes have forked tongues. Science 263: 1573–1577. https://doi.org/10.1126/science.263.5153.1573
Schwenk K. (1994b). Comparative biology and the importance of cladistic classification: a case study from the sensory biology of squamate reptiles. Biological Journal of the Linnean Society 52: 69–82. https://doi.org/10.1006/bijl.1994.1039
Schwenk K. (1995). Of tongues and noses: chemoreception in lizards and snakes. Trends in Ecology and Evolution 10: 7–12. https://doi.org/10.1016/S0169-5347(00)88953-3
Shine R. (1980). “Costs” of reproduction in reptiles. Oecologia 46: 92–100. https://doi.org/10.1007/BF00346972
Sih A. & Gleeson S.K. (1995). A limits-oriented approach to evolutionary ecology. Trends in Ecology and Evolution 10: 378–382. https://doi.org/10.1016/S0169-5347(00)89142-9
Simões B.F., Sampaio F.L., Jared C., Antoniazzi M.M., Loew E.R., Bowmaker J.K., Rodriguez A., Hart N.S., Hunt D.M., Patridge J.C. & Gower D.J. (2015). Visual system evolution and the nature of the ancestral snake. Journal of Evolutionary Biology 28: 1309–1320. https://doi.org/10.1111/jeb.12663
Simões B.F., Sampaio F.L., Douglas R.H., Kodandaramaiah U., Casewell N.R., Harrison R.A., Hart N.S., Patridge J.C., Hunt D.M. & Gower D.J. (2016). Visual pigments, ocular filters and the evolution of snake vision. Molecular Biology and Evolution 33: 3483–2495. https://doi.org/10.1093/molbev/msw148
Simon C., Gravelle K., Bissinger B.E., Eiss I. & Ruibal R. (1981). The role of chemoreception in the iguanid lizard Sceloporus jarrovi. Animal Behavior 29: 46–54. https://doi.org/10.1016/S0003-3472(81)80150-9
Sinervo B. & Lively C. (1996). The rock-paper-scissors game and the evolution of alternative male strategies. Nature 380: 240–243. https://doi.org/10.1038/380240a0
Solomon D.J. (1977). A review of chemical communication in freshwater fish. Journal of Fish Biology 11: 363–376. https://doi.org/10.1111/j.1095-8649.1977.tb04130.x
Steiger S., Schmitt T. & Schaefer H.M. (2011). The origin and dynamic evolution of chemical information transfer. Proceedings of the Royal Society B 278: 970–979. https://doi.org/10.1098/rspb.2010.2285
Stuart-Fox D.M., Moussalli A. & Whiting M.J. (2008). Predator-specific camouflage in chameleons. Biology Letters 4: 326–329. https://doi.org/10.1098/rsbl.2008.0173
Susswein A.J. & Nagle G.T. (2004). Peptide and protein pheromones in molluscs. Peptides 25: 1523–1530. https://doi.org/10.1016/j.peptides.2003.11.027
Swaisgood R., Rowe M. & Owings D. (1999). Assessment of rattlesnake dangerousness by California ground squirrels: exploitation of cues from rattling sounds. Animal Behavior 57: 1301–1310. https://doi.org/10.1006/anbe.1999.1095
Symonds M.R.E. & Elgar M.A. (2008). The evolution of pheromone diversity. Trends in Ecology and Evolution 23: 220–228. https://doi.org/10.1016/j.tree.2007.11.009
Taga M.E. & Bassler B.L. (2003). Chemical communication among bacteria. Proceedings of the National Academy of Sciences 100: 14549–14554. https://doi.org/10.1073/pnas.1934514100
Tinbergen N. (1953). Social Behavior in Animals, with Special Reference to Vertebrates. Methuen Press, London.
Trabalon M. (2012). Chemical communication and contact cuticular compounds in spider. In: Nentwig W. (ed.) Spider Ecophysiology: 125–140. Springer, Berlin.
Trotier D. & Døving K. (1998). Anatomical description of a new organ in the nose of domesticated animals by Ludvig Jacobson (1813). Chemical Senses 23:743–754. https://doi.org/10.1093/chemse/23.6.743
Van Damme R. (1999). Evolution of herbivory in lacertid lizards: effects of insularity and body size. Journal of Herpetology 33: 663–674. https://doi.org/10.2307/1565584
Van Damme R. & Quick K. (2001). Use of predator chemical cues by three species of lacertid lizards. Journal of Herpetology 35: 27–35. https://doi.org/10.2307/1566019
Van Damme R. & Vanhooydonck B. (2001). Origins of interspecific variation in lizards sprint capacity. Functional Ecology 15: 186–202. https://doi.org/10.1046/j.1365-2435.2001.00513.x
Van Damme R., Bauwens D. & Verheyen R. (1990). Evolutionary rigidity of thermal physiology: the case of the cool temperate lizard Lacerta vivipara. Oikos 57 (1): 61–67. https://doi.org/10.2307/3565737
Van Damme R., Aerts P. & Vanhooydonck B. (1997). No trade-off between sprinting and climbing in two populations of the lizard Podarcis hispanica (Reptilia: Lacertidae). Biological Journal of the Linnean Society 60: 493–503. https://doi.org/10.1006/bijl.1996.0115
Vanhooydonck B. & Van Damme R. (1999). Evolutionary relationships between body shape and habitat use in lacertid lizards. Evolution and Ecology Research 1: 785-805.
Vanhooydonck B. & Van Damme R. (2003). Relationships between locomotor performance, microhabitat use and antidepredator behaviour in lacertid lizards. Functional Ecology 17 (2): 160–169. https://doi.org/10.1046/j.1365-2435.2003.00716.x
Vanhooydonck B., Herrel A., Meyers J.J. & Irschick D.J. (2009). What determines dewlap diversity in Anolis lizards? An among-island comparison. Journal of Evolutionary Biology 22: 293–305. https://doi.org/10.1111/j.1420-9101.2008.01643.x
Vernet-Maury E. (1980). Trimethylthiazoline in fox feces: a natural alarming substance for the rat. In: Van der Starre H. (ed.) Proceedings of the VIIth International Symposium of Olfaction and Taste: 407. IRL Press, London.
Vervust B., Van Dongen S., Grbac I. & Van Damme R. (2008). Fluctuating asymmetry, physiological performance, and stress in island populations of the Italian wall lizard (Podarcis sicula). Journal of Herpetology 42: 369–377. https://doi.org/10.1670/07-1202.1
Vervust B., Van Dongen S., Grbac I. & Van Damme R. (2009). The mystery of the missing toes: extreme levels of natural mutilation in island lizard populations. Functional Ecology 23: 996–1003. https://doi.org/10.1111/j.1365-2435.2009.01580.x
Verwaijen D. & Van Damme R. (2007a). Correlated evolution of thermal characteristics and foraging strategy in lacertid lizards. Journal of Thermal Biology 32: 388–395. https://doi.org/10.1016/j.jtherbio.2007.05.005
Verwaijen D. & Van Damme R. (2007b). Relationships between chemosensory behaviour and foraging mode within lacertid lizards. Behaviour 144: 83–99. https://doi.org/10.1163/156853907779947373
Verwaijen D. & Van Damme R. (2008). Wide home ranges for widely foraging lizards. Zoology 111: 37–47. https://doi.org/10.1016/j.zool.2007.04.001
Vitt L.J. & Pianka E.R. (2005). Deep history impacts present-day ecology and biodiversity. Proceedings of the National Academy of Sciences 102: 7877–7881. https://doi.org/10.1073/pnas.0501104102
Vitt L.J. & Pianka E.R. (2007). Feeding ecology in the natural world. In: Reilly S.M., McBrayer L.D. & Miles D.B. (eds) Lizard Ecology: The Evolutionary Consequences of Foraging Mode: 141–172. Cambridge University Press, Cambridge.
Vitt L.J., Pianka E.R., Cooper W.E. & Schwenk K. (2003). History and the global ecology of squamate reptiles. The American Naturalist 162: 44–60. https://doi.org/10.1086/375172
Vogt R.G. & Riddiford L.M. (1981). Pheromone binding and inactivation by moth antennae. Nature 293: 161-163. https://doi.org/10.1038/293161a0
von Frisch K. (1967). The Dance Language and Orientation of Bees. Harvard University Press, Cambridge.
Weber M., Mitko L., Eltz T. & Ramirez S. (2016). Macroevolution of perfume signalling in orchid bees. Ecology Letters 19: 1314–1323. https://doi.org/10.1111/ele.12667
Weitzman S.H. & Fink S.V. (1985). Xenurobryconin phylogeny and putative pheromone pumps in glandulocaudine fishes (Teleostei: Characidae). Smithsonian Contributions to Zoology 421: 1–121. https://doi.org/10.5479/si.00810282.421
Weldon P.J., Flachsbarth B. & Schulz S. (2008). Natural products from the integument of nonavian reptiles. Natural Products Reports 25: 738–56. https://doi.org/10.1039/b509854h
Wever E.G., Vernon J.A., Peterson E.A. & Crowley D.E. (1963). Auditory responses in the tokay gecko. Proceedings of the National Academy of Sciences 50: 806–811. https://doi.org/10.1073/pnas.50.5.806
Wilczynski W., Rand A.S. & Ryan M.J. (2001). Evolution of calls and auditory tuning in the Physalaemus pustulosus species group. Brain, Behavior and Evolution 58: 137–151. https://doi.org/10.1159/000047268
Wilson E.O. (1965). Chemical communication in the social insects: insect societies are organized principally by complex systems of chemical signals. Science 149: 1064–1071. https://doi.org/10.1126/science.149.3688.1064
Witz B. (1996). A new device for capturing small and medium-sized lizards by hand: the lizard grabber. Herpetological Review 27: 130–131.
Woodley S.K. (2010). Pheromonal communication in amphibians. Journal of Comparative Physiology 196: 713–727. https://doi.org/10.1007/s00359-010-0540-6
Wyatt T.D. (2010). Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. Journal of Comparative Physiology 196: 685–700. https://doi.org/10.1007/s00359-010-0564-y
Wyatt T.D. (2014). Pheromones and Animal Behaviour: Chemical Signals and Signatures. Cambridge University Press, Cambridge.
Wyatt T.D. (2015). How animals communicate via pheromones. American Scientist 103: 114–121. https://doi.org/10.1511/2015.113.114
Zheng Y. & Wiens J.J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution 94: 537–547. https://doi.org/10.1016/j.ympev.2015.10.009