NetCoupler: Inference of Causal Links Between a Network and an External Variable (original) (raw)

The 'NetCoupler' algorithm identifies potential direct effects of correlated, high-dimensional variables formed as a network with an external variable. The external variable may act as the dependent/response variable or as an independent/predictor variable to the network.

Version:

0.1.0

Depends:

R (≥ 3.5.0)

Imports:

checkmate, dplyr, ids, igraph, lifecycle, magrittr, pcalg, ppcor, purrr, rlang (≥ 0.4.6), stats, tibble, tidyselect, utils, tidygraph

Suggests:

broom, furrr, knitr, rmarkdown, spelling, testthat (≥ 2.1.0)

Published:

2022-04-08

DOI:

10.32614/CRAN.package.NetCoupler

Author:

Luke Johnston ORCID iD [aut, cre, cph], Clemens WittenbecherORCID iD [aut], Fabian Eichelmann [ctb], Helena Zacharias [ctb], Daniel Ibsen ORCID iD [ctb]

Maintainer:

Luke Johnston

BugReports:

https://github.com/NetCoupler/NetCoupler/issues

License:

MIT + file

URL:

https://github.com/NetCoupler/NetCoupler

NeedsCompilation:

no

Language:

en-US

Materials:

README NEWS

CRAN checks:

NetCoupler results