doi:10.48550/arXiv.1905.05389>.">

evalITR: Evaluating Individualized Treatment Rules (original) (raw)

Provides various statistical methods for evaluating Individualized Treatment Rules under randomized data. The provided metrics include Population Average Value (PAV), Population Average Prescription Effect (PAPE), Area Under Prescription Effect Curve (AUPEC). It also provides the tools to analyze Individualized Treatment Rules under budget constraints. Detailed reference in Imai and Li (2019) <doi:10.48550/arXiv.1905.05389>.

Version: 1.0.0
Depends: dplyr (≥ 1.0), MASS (≥ 7.0), Matrix (≥ 1.0), quadprog (≥ 1.0), R (≥ 3.5.0), stats
Imports: caret, cli, e1071, forcats, gbm, ggdist, ggplot2, ggthemes, glmnet, grf, haven, purrr, rlang, rpart, rqPen, scales, utils, bartCause, SuperLearner
Suggests: doParallel, furrr, knitr, rmarkdown, testthat, bartMachine, elasticnet, randomForest, spelling
Published: 2023-08-25
DOI: 10.32614/CRAN.package.evalITR
Author: Michael Lingzhi Li [aut, cre], Kosuke Imai [aut], Jialu Li [ctb], Xiaolong Yang [ctb]
Maintainer: Michael Lingzhi Li
BugReports: https://github.com/MichaelLLi/evalITR/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/MichaelLLi/evalITR,https://michaellli.github.io/evalITR/,https://jialul.github.io/causal-ml/
NeedsCompilation: no
Language: en-US
Materials: README NEWS
In views: CausalInference
CRAN checks: evalITR results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=evalITRto link to this page.