fHMM: Fitting Hidden Markov Models to Financial Data (original) (raw)
Fitting (hierarchical) hidden Markov models to financial data via maximum likelihood estimation. See Oelschläger, L. and Adam, T. "Detecting Bearish and Bullish Markets in Financial Time Series Using Hierarchical Hidden Markov Models" (2021, Statistical Modelling) <doi:10.1177/1471082X211034048> for a reference on the method. A user guide is provided by the accompanying software paper "fHMM: Hidden Markov Models for Financial Time Series in R", Oelschläger, L., Adam, T., and Michels, R. (2024, Journal of Statistical Software) <doi:10.18637/jss.v109.i09>.
Version: | 1.4.1 |
---|---|
Depends: | R (≥ 4.0.0) |
Imports: | checkmate, cli, curl, foreach, graphics, grDevices, httr, jsonlite, MASS, oeli (≥ 0.3.0), padr, pracma, progress, Rcpp, stats, utils |
LinkingTo: | Rcpp, RcppArmadillo |
Suggests: | covr, doSNOW, knitr, parallel, rmarkdown, testthat (≥ 3.0.0), tseries |
Published: | 2024-09-16 |
DOI: | 10.32614/CRAN.package.fHMM |
Author: | Lennart Oelschläger [aut, cre], Timo Adam [aut], Rouven Michels [aut] |
Maintainer: | Lennart Oelschläger <oelschlaeger.lennart at gmail.com> |
BugReports: | https://github.com/loelschlaeger/fHMM/issues |
License: | GPL-3 |
URL: | https://loelschlaeger.de/fHMM/ |
NeedsCompilation: | yes |
Language: | en-US |
Citation: | fHMM citation info |
Materials: | README NEWS |
In views: | Finance |
CRAN checks: | fHMM results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=fHMMto link to this page.