reslr: Modelling Relative Sea Level Data (original) (raw)
The Bayesian modelling of relative sea-level data using a comprehensive approach that incorporates various statistical models within a unifying framework. Details regarding each statistical models; linear regression (Ashe et al 2019) <doi:10.1016/j.quascirev.2018.10.032>, change point models (Cahill et al 2015) <doi:10.1088/1748-9326/10/8/084002>, integrated Gaussian process models (Cahill et al 2015) <doi:10.1214/15-AOAS824>, temporal splines (Upton et al 2023) <doi:10.48550/arXiv.2301.09556>, spatio-temporal splines (Upton et al 2023) <doi:10.48550/arXiv.2301.09556> and generalised additive models (Upton et al 2023) <doi:10.48550/arXiv.2301.09556>. This package facilitates data loading, model fitting and result summarisation. Notably, it accommodates the inherent measurement errors found in relative sea-level data across multiple dimensions, allowing for their inclusion in the statistical models.
Version: | 0.1.1 |
---|---|
Depends: | R (≥ 2.10) |
Imports: | data.table, dplyr, fastDummies, fields, geosphere, ggplot2, magrittr, ncdf4, plyr, posterior, purrr, R2jags, stringr, tidybayes, tidyr |
Suggests: | knitr, rmarkdown, testthat, vdiffr |
Published: | 2023-06-15 |
DOI: | 10.32614/CRAN.package.reslr |
Author: | Maeve Upton [cph, aut, cre], Andrew Parnell [aut], Niamh Cahill [aut] |
Maintainer: | Maeve Upton |
BugReports: | https://github.com/maeveupton/reslr/issues |
License: | MIT + file |
URL: | https://github.com/maeveupton/reslr,https://maeveupton.github.io/reslr/ |
NeedsCompilation: | no |
Language: | en-US |
Materials: | NEWS |
CRAN checks: | reslr results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=reslrto link to this page.