Markwald RR, Fitzharris TP, and Smith WN (1975) Sturctural analysis of endocardial cytodifferentiation. Dev Biol 42, 160-180.
Armstrong EJ, and Bischoff J (2004) Heart valve development: endothelial cell signaling and differentiation. Circ Res 95, 459-470.
Nakajima Y, Yamagishi T, Hokari S, and Nakamura H (2000) Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec 258, 119-127.
van Meeteren LA, and ten Dijke P (2012) Regulation of endothelial cell plasticity by TGF-beta. Cell Tissue Res 347, 177-186.
Krenning G, Zeisberg EM, and Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225, 631-637.
Zeisberg EM, Potenta S, Xie L, Zeisberg M, and Kalluri R (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67, 10123-10128.
Ghosh AK, Quaggin SE, and Vaughan DE (2013) Molecular basis of organ fibrosis: potential therapeutic approaches. Exp Biol Med (Maywood) 238, 461-481.
Arciniegas E, Frid MG, Douglas IS, and Stenmark KR (2007) Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 293, L1-L8.
Cooley BC, Nevado J, and Mellad J (2014) TGF-beta signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med 6, 227ra34.
Chen PY, Qin L, and Barnes C (2012) FGF regulates TGF-beta signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep 2, 1684-1696.
Yao Y, Jumabay M, Ly A, Radparvar M, Cubberly MR, and Bostrom KI (2013) A role for the endothelium in vascular calcification. Circ Res 113, 495-504.
Chen PY, Qin L, and Baeyens N (2015) Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest 125, 4514-4528.
Maddaluno L, Rudini N, and Cuttano R (2013) EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498, 492-496.
Potenta S, Zeisberg E, and Kalluri R (2008) The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 99, 1375-1379.
Kovacic JC, Mercader N, Torres M, Boehm M, and Fuster V (2012) Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 125, 1795-1808.
Lee A, McLean D, Choi J, Kang H, Chang W, and Kim J (2014) Therapeutic implications of microRNAs in pulmonary arterial hypertension. BMB Rep 47, 311-317.
Kim JD, Lee A, and Choi J (2015) Epigenetic modulation as a therapeutic approach for pulmonary arterial hypertension. Exp Mol Med 47, e175.
Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319, 1785-1786.
Pardali E, Sanchez-Duffhues G, Gomez-Puerto MC, and Ten Dijke P (2017) TGF-beta-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases. Int J Mol Sci 18.
Noseda M, McLean G, and Niessen K (2004) Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res 94, 910-917.
Perez L, Munoz-Durango N, and Riedel CA (2017) Endothelial-to-mesenchymal transition: Cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev 33, 41-54.
Welch-Reardon KM, Wu N, and Hughes CC (2015) A role for partial endothelial-mesenchymal transitions in angiogenesis?. Arterioscler Thromb Vasc Biol 35, 303-308.
Nagai T, Kanasaki M, and Srivastava SP (Array) N-acetylseryl-aspartyl-lysyl-proline inhibits diabetes-associated kidney fibrosis and endothelial-mesenchymal transition. Biomed Res Int, 696475.
Zhang H, Hu J, and Liu L (2017) MiR-200a modulates TGF-beta1-induced endothelial-to-mesenchymal shift via suppression of GRB2 in HAECs. Biomed Pharmacother 95, 215-222.
Correia AC, Moonen JR, Brinker MG, and Krenning G (2016) FGF2 inhibits endothelial-mesenchymal transition through microRNA-20a-mediated repression of canonical TGF-beta signaling. J Cell Sci 129, 569-579.
Sun Y, Cai J, Yu S, Chen S, Li F, and Fan C (2016) MiR-630 Inhibits Endothelial-Mesenchymal Transition by Targeting Slug in Traumatic Heterotopic Ossification. Sci Rep 6, 22729.
Kanasaki K, Shi S, and Kanasaki M (2014) Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 63, 2120-2131.
Korpal M, Lee ES, Hu G, and Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283, 14910-14914.
Zhang S, Weinheimer C, and Courtois M (2003) The role of the Grb2-p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis. J Clin Invest 111, 833-841.
Ge S, Xie J, Liu F, He J, and He J (2015) MicroRNA-19b reduces hepatic stellate cell proliferation by targeting GRB2 in hepatic fibrosis models in vivo and in vitro as part of the inhibitory effect of estradiol. J Cell Biochem 116, 2455-2464.
Fafeur V, Terman BI, Blum J, and Bohlen P (1990) Basic FGF treatment of endothelial cells down-regulates the 85-KDa TGF beta receptor subtype and decreases the growth inhibitory response to TGF-beta 1. Growth Factors 3, 237-245.
Papetti M, Shujath J, Riley KN, and Herman IM (2003) FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways. Invest Ophthalmol Vis Sci 44, 4994-5005.
Ramos C, Becerril C, and Montano M (2010) FGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway. Am J Physiol Lung Cell Mol Physiol 299, L222-231.
Lee JG, Ko MK, and Kay EP (2012) Endothelial mesenchymal transformation mediated by IL-1beta-induced FGF-2 in corneal endothelial cells. Exp Eye Res 95, 35-39.
Lee HT, Lee JG, Na M, and Kay EP (2004) FGF-2 induced by interleukin-1 beta through the action of phosphatidylinositol 3-kinase mediates endothelial mesenchymal transformation in corneal endothelial cells. J Biol Chem 279, 32325-32332.
Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100, 158-173.
Lagendijk AK, Goumans MJ, and Burkhard SB (2011) MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production. Circ Res 109, 649-657.
Bayoumi AS, Teoh JP, and Aonuma T (2017) MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res 113, 1603-1614.
Bijkerk R, de Bruin RG, and van Solingen C (2012) MicroRNA-155 functions as a negative regulator of RhoA signaling in TGF-beta-induced endothelial to mesenchymal transition. Microrna 1, 2-10.
Ruderman NB, Williamson JR, and Brownlee M (1992) Glucose and diabetic vascular disease. FASEB J 6, 2905-2914.
Cao Y, Feng B, Chen S, Chu Y, and Chakrabarti S (2014) Mechanisms of endothelial to mesenchymal transition in the retina in diabetes. Invest Ophthalmol Vis Sci 55, 7321-7331.
Feng B, Cao Y, Chen S, Chu X, Chu Y, and Chakrabarti S (2016) miR-200b Mediates Endothelial-to-Mesenchymal Transition in Diabetic Cardiomyopathy. Diabetes 65, 768-779.
Geng HZ, and Guan J (2017) MiR-18a-5p inhibits endothelial mesenchymal transition and cardiac fibrosis through the Notch2 pathway. Biochem Biophys Res Commun 491, 329-336.
Kumarswamy R, Volkmann I, Jazbutyte V, Dangwal S, Park DH, and Thum T (2012) Transforming Growth Factor-beta-Induced Endothelial-to-Mesenchymal Transition Is Partly Mediated by MicroRNA-21. Arterioscler Thromb Vasc Biol 32, 361-369.
Ghosh AK, Nagpal V, Covington JW, Michaels MA, and Vaughan DE (2012) Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cell Signal 24, 1031-1036.
Suzuki HI, Katsura A, Mihira H, Horie M, Saito A, and Miyazono K (2017) Regulation of TGF-beta-mediated endothelial-mesenchymal transition by microRNA-27. J Biochem 161, 417-420.
Li L, Kim IK, Chiasson V, Chatterjee P, and Gupta S (2017) NF-kappaB mediated miR-130a modulation in lung microvascular cell remodeling: Implication in pulmonary hypertension. Exp Cell Res 359, 235-242.
Xu YP, He Q, and Shen Z (2017) MiR-126a-5p is involved in the hypoxia-induced endothelial-to-mesenchymal transition of neonatal pulmonary hypertension. Hypertens Res 40, 552-561.
Kendall RT, and Feghali-Bostwick CA (2014) Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 5, 123.
Zeisberg EM, Tarnavski O, and Zeisberg M (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13, 952-961.
Lin F, Wang N, and Zhang TC (2012) The role of endothelial-mesenchymal transition in development and pathological process. IUBMB Life 64, 717-723.
He M, Chen Z, and Martin M (2017) miR-483 Targeting of CTGF Suppresses Endothelial-to-Mesenchymal Transition: Therapeutic Implications in Kawasaki Disease. Circ Res 120, 354-365.
Guo Y, Li P, Bledsoe G, Yang ZR, Chao L, and Chao J (2015) Kallistatin inhibits TGF-beta-induced endothelial-mesenchymal transition by differential regulation of microRNA-21 and eNOS expression. Exp Cell Res 337, 103-110.
Shen B, Hagiwara M, Yao YY, Chao L, and Chao J (2008) Salutary effect of kallistatin in salt-induced renal injury, inflammation, and fibrosis via antioxidative stress. Hypertension 51, 1358-1365.