Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2–NF-κB and JNK–AP-1 signaling pathways (original) (raw)

References

  1. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, Greenlund K, Daniels S, Nichol G, Tomaselli GF, Arnett DK, Fonarow GC, Ho PM, Lauer MS, Masoudi FA, Robertson RM, Roger V, Schwamm LH, Sorlie P, Yancy CW, Rosamond WD (2010) Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation 121(4):586–613. doi:10.1161/CIRCULATIONAHA.109.192703
    Article PubMed Google Scholar
  2. Seals DR, Jablonski KL, Donato AJ (2011) Aging and vascular endothelial function in humans. Clin Sci (Lond) 120(9):357–375. doi:10.1042/CS20100476
    Article CAS Google Scholar
  3. Kolluru GK, Bir SC, Kevil CG (2012) Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012:918267. doi:10.1155/2012/918267
    PubMed PubMed Central Google Scholar
  4. Tabit CE, Chung WB, Hamburg NM, Vita JA (2010) Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord 11(1):61–74. doi:10.1007/s11154-010-9134-4
    Article CAS PubMed PubMed Central Google Scholar
  5. Stirban A, Tschope D (2015) Vascular effects of dietary advanced glycation end products. Int J Endocrinol 2015:836498. doi:10.1155/2015/836498
    Article PubMed PubMed Central Google Scholar
  6. Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46:223–234. doi:10.1146/annurev.med.46.1.223
    Article CAS PubMed Google Scholar
  7. Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, Kislinger T, Stern DM, Schmidt AM, De Caterina R (2002) Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105(7):816–822
    Article CAS PubMed Google Scholar
  8. Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario RH, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, Schmidt AM (2008) Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE−/− mice. J Clin Invest 118(1):183–194. doi:10.1172/JCI32703
    Article CAS PubMed PubMed Central Google Scholar
  9. Kajikawa M, Nakashima A, Fujimura N, Maruhashi T, Iwamoto Y, Iwamoto A, Matsumoto T, Oda N, Hidaka T, Kihara Y, Chayama K, Goto C, Aibara Y, Noma K, Takeuchi M, Matsui T, Yamagishi S, Higashi Y (2014) Ratio of serum levels of AGEs to soluble form of RAGE is a predictor of endothelial function. Diabetes Care 38(1):119–125. doi:10.2337/dc14-1435
    Article PubMed Google Scholar
  10. Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272(28):17810–17814
    Article CAS PubMed Google Scholar
  11. Yeh CH, Sturgis L, Haidacher J, Zhang XN, Sherwood SJ, Bjercke RJ, Juhasz O, Crow MT, Tilton RG, Denner L (2001) Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes 50(6):1495–1504
    Article CAS PubMed Google Scholar
  12. Bianchi R, Adami C, Giambanco I, Donato R (2007) S100B binding to RAGE in microglia stimulates COX-2 expression. J Leukoc Biol 81(1):108–118. doi:10.1189/jlb.0306198
    Article CAS PubMed Google Scholar
  13. Bianchi R, Giambanco I, Donato R (2010) S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging 31(4):665–677. doi:10.1016/j.neurobiolaging.2008.05.017
    Article CAS PubMed Google Scholar
  14. Xie J, Mendez JD, Mendez-Valenzuela V, Aguilar-Hernandez MM (2013) Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 25(11):2185–2197. doi:10.1016/j.cellsig.2013.06.013
    Article CAS PubMed Google Scholar
  15. Rodriguez C, Martinez-Gonzalez J, Raposo B, Alcudia JF, Guadall A, Badimon L (2008) Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases. Cardiovasc Res 79(1):7–13. doi:10.1093/cvr/cvn102
    Article CAS PubMed Google Scholar
  16. Raposo B, Rodriguez C, Martinez-Gonzalez J, Badimon L (2004) High levels of homocysteine inhibit lysyl oxidase (LOX) and downregulate LOX expression in vascular endothelial cells. Atherosclerosis 177(1):1–8. doi:10.1016/j.atherosclerosis.2004.06.015
    Article CAS PubMed Google Scholar
  17. Rodriguez C, Alcudia JF, Martinez-Gonzalez J, Raposo B, Navarro MA, Badimon L (2008) Lysyl oxidase (LOX) down-regulation by TNFalpha: a new mechanism underlying TNFalpha-induced endothelial dysfunction. Atherosclerosis 196(2):558–564. doi:10.1016/j.atherosclerosis.2007.06.002
    Article CAS PubMed Google Scholar
  18. Rodriguez C, Raposo B, Martinez-Gonzalez J, Casani L, Badimon L (2002) Low density lipoproteins downregulate lysyl oxidase in vascular endothelial cells and the arterial wall. Arterioscler Thromb Vasc Biol 22(9):1409–1414
    Article CAS PubMed Google Scholar
  19. Osawa T, Ohga N, Akiyama K, Hida Y, Kitayama K, Kawamoto T, Yamamoto K, Maishi N, Kondoh M, Onodera Y, Fujie M, Shinohara N, Nonomura K, Shindoh M, Hida K (2013) Lysyl oxidase secreted by tumour endothelial cells promotes angiogenesis and metastasis. Br J Cancer 109(8):2237–2247. doi:10.1038/bjc.2013.535
    Article CAS PubMed PubMed Central Google Scholar
  20. Zhu J, Huang S, Wu G, Huang C, Li X, Chen Z, Zhao L, Zhao Y (2015) Lysyl Oxidase is predictive of unfavorable outcomes and essential for regulation of vascular endothelial growth factor in hepatocellular carcinoma. Dig Dis Sci. 60(10):3019-3031. doi:10.1007/s10620-015-3734-5
    Article CAS PubMed Google Scholar
  21. Nuthakki VK, Fleser PS, Malinzak LE, Seymour ML, Callahan RE, Bendick PJ, Zelenock GB, Shanley CJ (2004) Lysyl oxidase expression in a rat model of arterial balloon injury. J Vasc Surg 40(1):123–129. doi:10.1016/j.jvs.2004.02.028
    Article PubMed Google Scholar
  22. Bourque SL, Davidge ST, Adams MA (2011) The interaction between endothelin-1 and nitric oxide in the vasculature: new perspectives. Am J Physiol Regul Integr Comp Physiol 300(6):R1288–R1295. doi:10.1152/ajpregu.00397.2010
    Article CAS PubMed Google Scholar
  23. Pernow J, Shemyakin A, Bohm F (2012) New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus. Life Sci 91(13–14):507–516. doi:10.1016/j.lfs.2012.03.029
    Article CAS PubMed Google Scholar
  24. Papachroni KK, Piperi C, Levidou G, Korkolopoulou P, Pawelczyk L, Diamanti-Kandarakis E, Papavassiliou AG (2010) Lysyl oxidase interacts with AGE signalling to modulate collagen synthesis in polycystic ovarian tissue. J Cell Mol Med 14(10):2460–2469. doi:10.1111/j.1582-4934.2009.00841.x
    Article CAS PubMed PubMed Central Google Scholar
  25. Chronopoulos A, Tang A, Beglova E, Trackman PC, Roy S (2010) High glucose increases lysyl oxidase expression and activity in retinal endothelial cells: mechanism for compromised extracellular matrix barrier function. Diabetes 59(12):3159–3166. doi:10.2337/db10-0365
    Article CAS PubMed PubMed Central Google Scholar
  26. Christakou C, Economou F, Livadas S, Piperi C, Adamopoulos C, Marinakis E, Diamanti-Kandarakis E (2011) Strong and positive association of endothelin-1 with AGEs in PCOS: a causal relationship or a bystander? Hormones (Athens) 10(4):292–297
    Article Google Scholar
  27. Bierhaus A, Chevion S, Chevion M, Hofmann M, Quehenberger P, Illmer T, Luther T, Berentshtein E, Tritschler H, Muller M, Wahl P, Ziegler R, Nawroth PP (1997) Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 46(9):1481–1490
    Article CAS PubMed Google Scholar
  28. Quehenberger P, Bierhaus A, Fasching P, Muellner C, Klevesath M, Hong M, Stier G, Sattler M, Schleicher E, Speiser W, Nawroth PP (2000) Endothelin 1 transcription is controlled by nuclear factor-kappaB in AGE-stimulated cultured endothelial cells. Diabetes 49(9):1561–1570
    Article CAS PubMed Google Scholar
  29. Quehenberger P, Exner M, Sunder-Plassmann R, Ruzicka K, Bieglmayer C, Endler G, Muellner C, Speiser W, Wagner O (2002) Leptin induces endothelin-1 in endothelial cells in vitro. Circ Res 90(6):711–718
    Article CAS PubMed Google Scholar
  30. Stow LR, Jacobs ME, Wingo CS, Cain BD (2011) Endothelin-1 gene regulation. FASEB J 25(1):16–28. doi:10.1096/fj.10-161612
    Article CAS PubMed PubMed Central Google Scholar
  31. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386
    CAS PubMed Google Scholar
  32. Guo XH, Huang QB, Chen B, Wang SY, Li Q, Zhu YJ, Hou FF, Fu N, Brunk UT, Zhao M (2006) Advanced glycation end products induce actin rearrangement and subsequent hyperpermeability of endothelial cells. APMIS 114(12):874–883. doi:10.1111/j.1600-0463.2006.apm_372.x
    Article CAS PubMed Google Scholar
  33. Shen C, Li Q, Zhang YC, Ma G, Feng Y, Zhu Q, Dai Q, Chen Z, Yao Y, Chen L, Jiang Y, Liu N (2010) Advanced glycation endproducts increase EPC apoptosis and decrease nitric oxide release via MAPK pathways. Biomed Pharmacother 64(1):35–43. doi:10.1016/j.biopha.2009.03.002
    Article CAS PubMed Google Scholar
  34. Sun C, Liang C, Ren Y, Zhen Y, He Z, Wang H, Tan H, Pan X, Wu Z (2009) Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res Cardiol 104(1):42–49. doi:10.1007/s00395-008-0738-8
    Article CAS PubMed Google Scholar
  35. Zhong Y, Cheng CF, Luo YZ, Tian CW, Yang H, Liu BR, Chen MS, Chen YF, Liu SM (2015) C-reactive protein stimulates RAGE expression in human coronary artery endothelial cells in vitro via ROS generation and ERK/NF-kappaB activation. Acta Pharmacol Sin 36(4):440–447. doi:10.1038/aps.2014.163
    Article CAS PubMed PubMed Central Google Scholar
  36. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106(6):653–658
    Article PubMed Google Scholar
  37. Widlansky ME, Gokce N, Keaney JF Jr, Vita JA (2003) The clinical implications of endothelial dysfunction. J Am Coll Cardiol 42(7):1149–1160. doi:10.1016/S0735-1097(03)00994-X
    Article CAS PubMed Google Scholar
  38. Cooke JP (2000) The endothelium: a new target for therapy. Vasc Med 5(1):49–53
    Article CAS PubMed Google Scholar
  39. Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23(2):168–175
    Article CAS PubMed Google Scholar
  40. Vita JA (2002) Nitric oxide-dependent vasodilation in human subjects. Methods Enzymol 359:186–200
    Article CAS PubMed Google Scholar
  41. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115(10):1285–1295. doi:10.1161/CIRCULATIONAHA.106.652859
    PubMed Google Scholar
  42. Feletou M, Vanhoutte PM (2006) Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 291(3):H985–1002. doi:10.1152/ajpheart.00292.2006
    Article CAS PubMed Google Scholar
  43. Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D, Lieberman EH, Ganz P, Creager MA, Yeung AC et al (1995) Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 26(5):1235–1241. doi:10.1016/0735-1097(95)00327-4
    Article CAS PubMed Google Scholar
  44. Takase B, Uehata A, Akima T, Nagai T, Nishioka T, Hamabe A, Satomura K, Ohsuzu F, Kurita A (1998) Endothelium-dependent flow-mediated vasodilation in coronary and brachial arteries in suspected coronary artery disease. Am J Cardiol 82(12):1535–1539, A1537–A1538. doi:10.1016/S0002-9149(98)00702-4
  45. Chua BH, Chua CC, Diglio CA, Siu BB (1993) Regulation of endothelin-1 mRNA by angiotensin II in rat heart endothelial cells. Biochim Biophys Acta 1178(2):201–206. doi:10.1016/0167-4889(93)90010-M
    Article CAS PubMed Google Scholar
  46. Dekker GA, Kraayenbrink AA, Zeeman GG, van Kamp GJ (1991) Increased plasma levels of the novel vasoconstrictor peptide endothelin in severe pre-eclampsia. Eur J Obstet Gynecol Reprod Biol 40(3):215–220
    Article CAS PubMed Google Scholar
  47. Marsden PA, Brenner BM (1992) Transcriptional regulation of the endothelin-1 gene by TNF-alpha. Am J Physiol 262(4 Pt 1):C854–C861
    CAS PubMed Google Scholar
  48. Schini VB, Hendrickson H, Heublein DM, Burnett JC Jr, Vanhoutte PM (1989) Thrombin enhances the release of endothelin from cultured porcine aortic endothelial cells. Eur J Pharmacol 165(2–3):333–334. doi:10.1016/0014-2999(89)90733-4
    Article CAS PubMed Google Scholar
  49. Yoshizumi M, Kurihara H, Morita T, Yamashita T, Oh-hashi Y, Sugiyama T, Takaku F, Yanagisawa M, Masaki T, Yazaki Y (1990) Interleukin 1 increases the production of endothelin-1 by cultured endothelial cells. Biochem Biophys Res Commun 166(1):324–329. doi:10.1016/0006-291X(90)91948-R
    Article CAS PubMed Google Scholar
  50. Bruel A, Oxlund H (1996) Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis 127(2):155–165. doi:10.1016/S0021-9150(96)05947-3
    Article CAS PubMed Google Scholar
  51. Semba RD, Nicklett EJ, Ferrucci L (2010) Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci 65(9):963–975. doi:10.1093/gerona/glq074
    Article PubMed Google Scholar
  52. Vlassara H, Fuh H, Makita Z, Krungkrai S, Cerami A, Bucala R (1992) Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci U S A 89(24):12043–12047
    Article CAS PubMed PubMed Central Google Scholar
  53. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M et al (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267(21):14987–14997
    CAS PubMed Google Scholar
  54. Zieman SJ, Melenovsky V, Clattenburg L, Corretti MC, Capriotti A, Gerstenblith G, Kass DA (2007) Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J Hypertens 25(3):577–583. doi:10.1097/HJH.0b013e328013e7dd
    Article CAS PubMed Google Scholar
  55. Simm A, Munch G, Seif F, Schenk O, Heidland A, Richter H, Vamvakas S, Schinzel R (1997) Advanced glycation endproducts stimulate the MAP-kinase pathway in tubulus cell line LLC-PK1. FEBS Lett 410(2–3):481–484. doi:10.1016/S0014-5793(97)00644-3
    Article CAS PubMed Google Scholar
  56. Diamanti-Kandarakis E, Piperi C, Kalofoutis A, Creatsas G (2005) Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 62(1):37–43. doi:10.1111/j.1365-2265.2004.02170.x
    Article CAS Google Scholar
  57. Henle T, Miyata T (2003) Advanced glycation end products in uremia. Adv Ren Replace Ther 10(4):321–331. doi:10.1053/j.arrt.2003.08.006
    Article PubMed Google Scholar
  58. Cai L, Kang YJ (2001) Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol 1(3):181–193. doi:10.1385/CT:1:3:181
    Article CAS PubMed Google Scholar
  59. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473(7347):317–325. doi:10.1038/nature10146
    Article CAS PubMed Google Scholar
  60. Munzel T, Gori T, Bruno RM, Taddei S (2010) Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 31(22):2741–2748. doi:10.1093/eurheartj/ehq396
    Article PubMed Google Scholar
  61. Tinkel J, Hassanain H, Khouri SJ (2012) Cardiovascular antioxidant therapy: a review of supplements, pharmacotherapies, and mechanisms. Cardiol Rev 20(2):77–83. doi:10.1097/CRD.0b013e31823dbbad
    PubMed Google Scholar
  62. Devaraj S, Kumaresan PR, Jialal I (2011) C-reactive protein induces release of both endothelial microparticles and circulating endothelial cells in vitro and in vivo: further evidence of endothelial dysfunction. Clin Chem 57(12):1757–1761. doi:10.1373/clinchem.2011.169839
    Article CAS PubMed Google Scholar
  63. Kagan HM, Raghavan J, Hollander W (1981) Changes in aortic lysyl oxidase activity in diet-induced atherosclerosis in the rabbit. Arteriosclerosis 1(4):287–291
    Article CAS PubMed Google Scholar
  64. Maki JM, Sormunen R, Lippo S, Kaarteenaho-Wiik R, Soininen R, Myllyharju J (2005) Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. Am J Pathol 167(4):927–936. doi:10.1016/S0002-9440(10)61183-2
    Article CAS PubMed PubMed Central Google Scholar
  65. Bacon CR, Cary NR, Davenport AP (1996) Endothelin peptide and receptors in human atherosclerotic coronary artery and aorta. Circ Res 79(4):794–801
    Article CAS PubMed Google Scholar
  66. Donato AJ, Gano LB, Eskurza I, Silver AE, Gates PE, Jablonski K, Seals DR (2009) Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol 297(1):H425–H432. doi:10.1152/ajpheart.00689.2008
    Article CAS PubMed PubMed Central Google Scholar
  67. Goel A, Su B, Flavahan S, Lowenstein CJ, Berkowitz DE, Flavahan NA (2010) Increased endothelial exocytosis and generation of endothelin-1 contributes to constriction of aged arteries. Circ Res 107(2):242–251. doi:10.1161/CIRCRESAHA.109.210229
    Article CAS PubMed PubMed Central Google Scholar

Download references