Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2–NF-κB and JNK–AP-1 signaling pathways (original) (raw)
References
Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, Greenlund K, Daniels S, Nichol G, Tomaselli GF, Arnett DK, Fonarow GC, Ho PM, Lauer MS, Masoudi FA, Robertson RM, Roger V, Schwamm LH, Sorlie P, Yancy CW, Rosamond WD (2010) Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation 121(4):586–613. doi:10.1161/CIRCULATIONAHA.109.192703 ArticlePubMed Google Scholar
Seals DR, Jablonski KL, Donato AJ (2011) Aging and vascular endothelial function in humans. Clin Sci (Lond) 120(9):357–375. doi:10.1042/CS20100476 ArticleCAS Google Scholar
Kolluru GK, Bir SC, Kevil CG (2012) Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012:918267. doi:10.1155/2012/918267 PubMedPubMed Central Google Scholar
Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, Kislinger T, Stern DM, Schmidt AM, De Caterina R (2002) Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105(7):816–822 ArticleCASPubMed Google Scholar
Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario RH, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, Schmidt AM (2008) Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE−/− mice. J Clin Invest 118(1):183–194. doi:10.1172/JCI32703 ArticleCASPubMedPubMed Central Google Scholar
Kajikawa M, Nakashima A, Fujimura N, Maruhashi T, Iwamoto Y, Iwamoto A, Matsumoto T, Oda N, Hidaka T, Kihara Y, Chayama K, Goto C, Aibara Y, Noma K, Takeuchi M, Matsui T, Yamagishi S, Higashi Y (2014) Ratio of serum levels of AGEs to soluble form of RAGE is a predictor of endothelial function. Diabetes Care 38(1):119–125. doi:10.2337/dc14-1435 ArticlePubMed Google Scholar
Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272(28):17810–17814 ArticleCASPubMed Google Scholar
Yeh CH, Sturgis L, Haidacher J, Zhang XN, Sherwood SJ, Bjercke RJ, Juhasz O, Crow MT, Tilton RG, Denner L (2001) Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes 50(6):1495–1504 ArticleCASPubMed Google Scholar
Bianchi R, Giambanco I, Donato R (2010) S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging 31(4):665–677. doi:10.1016/j.neurobiolaging.2008.05.017 ArticleCASPubMed Google Scholar
Xie J, Mendez JD, Mendez-Valenzuela V, Aguilar-Hernandez MM (2013) Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 25(11):2185–2197. doi:10.1016/j.cellsig.2013.06.013 ArticleCASPubMed Google Scholar
Rodriguez C, Martinez-Gonzalez J, Raposo B, Alcudia JF, Guadall A, Badimon L (2008) Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases. Cardiovasc Res 79(1):7–13. doi:10.1093/cvr/cvn102 ArticleCASPubMed Google Scholar
Raposo B, Rodriguez C, Martinez-Gonzalez J, Badimon L (2004) High levels of homocysteine inhibit lysyl oxidase (LOX) and downregulate LOX expression in vascular endothelial cells. Atherosclerosis 177(1):1–8. doi:10.1016/j.atherosclerosis.2004.06.015 ArticleCASPubMed Google Scholar
Rodriguez C, Alcudia JF, Martinez-Gonzalez J, Raposo B, Navarro MA, Badimon L (2008) Lysyl oxidase (LOX) down-regulation by TNFalpha: a new mechanism underlying TNFalpha-induced endothelial dysfunction. Atherosclerosis 196(2):558–564. doi:10.1016/j.atherosclerosis.2007.06.002 ArticleCASPubMed Google Scholar
Rodriguez C, Raposo B, Martinez-Gonzalez J, Casani L, Badimon L (2002) Low density lipoproteins downregulate lysyl oxidase in vascular endothelial cells and the arterial wall. Arterioscler Thromb Vasc Biol 22(9):1409–1414 ArticleCASPubMed Google Scholar
Osawa T, Ohga N, Akiyama K, Hida Y, Kitayama K, Kawamoto T, Yamamoto K, Maishi N, Kondoh M, Onodera Y, Fujie M, Shinohara N, Nonomura K, Shindoh M, Hida K (2013) Lysyl oxidase secreted by tumour endothelial cells promotes angiogenesis and metastasis. Br J Cancer 109(8):2237–2247. doi:10.1038/bjc.2013.535 ArticleCASPubMedPubMed Central Google Scholar
Zhu J, Huang S, Wu G, Huang C, Li X, Chen Z, Zhao L, Zhao Y (2015) Lysyl Oxidase is predictive of unfavorable outcomes and essential for regulation of vascular endothelial growth factor in hepatocellular carcinoma. Dig Dis Sci. 60(10):3019-3031. doi:10.1007/s10620-015-3734-5 ArticleCASPubMed Google Scholar
Nuthakki VK, Fleser PS, Malinzak LE, Seymour ML, Callahan RE, Bendick PJ, Zelenock GB, Shanley CJ (2004) Lysyl oxidase expression in a rat model of arterial balloon injury. J Vasc Surg 40(1):123–129. doi:10.1016/j.jvs.2004.02.028 ArticlePubMed Google Scholar
Bourque SL, Davidge ST, Adams MA (2011) The interaction between endothelin-1 and nitric oxide in the vasculature: new perspectives. Am J Physiol Regul Integr Comp Physiol 300(6):R1288–R1295. doi:10.1152/ajpregu.00397.2010 ArticleCASPubMed Google Scholar
Papachroni KK, Piperi C, Levidou G, Korkolopoulou P, Pawelczyk L, Diamanti-Kandarakis E, Papavassiliou AG (2010) Lysyl oxidase interacts with AGE signalling to modulate collagen synthesis in polycystic ovarian tissue. J Cell Mol Med 14(10):2460–2469. doi:10.1111/j.1582-4934.2009.00841.x ArticleCASPubMedPubMed Central Google Scholar
Chronopoulos A, Tang A, Beglova E, Trackman PC, Roy S (2010) High glucose increases lysyl oxidase expression and activity in retinal endothelial cells: mechanism for compromised extracellular matrix barrier function. Diabetes 59(12):3159–3166. doi:10.2337/db10-0365 ArticleCASPubMedPubMed Central Google Scholar
Christakou C, Economou F, Livadas S, Piperi C, Adamopoulos C, Marinakis E, Diamanti-Kandarakis E (2011) Strong and positive association of endothelin-1 with AGEs in PCOS: a causal relationship or a bystander? Hormones (Athens) 10(4):292–297 Article Google Scholar
Bierhaus A, Chevion S, Chevion M, Hofmann M, Quehenberger P, Illmer T, Luther T, Berentshtein E, Tritschler H, Muller M, Wahl P, Ziegler R, Nawroth PP (1997) Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 46(9):1481–1490 ArticleCASPubMed Google Scholar
Quehenberger P, Bierhaus A, Fasching P, Muellner C, Klevesath M, Hong M, Stier G, Sattler M, Schleicher E, Speiser W, Nawroth PP (2000) Endothelin 1 transcription is controlled by nuclear factor-kappaB in AGE-stimulated cultured endothelial cells. Diabetes 49(9):1561–1570 ArticleCASPubMed Google Scholar
Quehenberger P, Exner M, Sunder-Plassmann R, Ruzicka K, Bieglmayer C, Endler G, Muellner C, Speiser W, Wagner O (2002) Leptin induces endothelin-1 in endothelial cells in vitro. Circ Res 90(6):711–718 ArticleCASPubMed Google Scholar
Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386 CASPubMed Google Scholar
Guo XH, Huang QB, Chen B, Wang SY, Li Q, Zhu YJ, Hou FF, Fu N, Brunk UT, Zhao M (2006) Advanced glycation end products induce actin rearrangement and subsequent hyperpermeability of endothelial cells. APMIS 114(12):874–883. doi:10.1111/j.1600-0463.2006.apm_372.x ArticleCASPubMed Google Scholar
Shen C, Li Q, Zhang YC, Ma G, Feng Y, Zhu Q, Dai Q, Chen Z, Yao Y, Chen L, Jiang Y, Liu N (2010) Advanced glycation endproducts increase EPC apoptosis and decrease nitric oxide release via MAPK pathways. Biomed Pharmacother 64(1):35–43. doi:10.1016/j.biopha.2009.03.002 ArticleCASPubMed Google Scholar
Sun C, Liang C, Ren Y, Zhen Y, He Z, Wang H, Tan H, Pan X, Wu Z (2009) Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res Cardiol 104(1):42–49. doi:10.1007/s00395-008-0738-8 ArticleCASPubMed Google Scholar
Zhong Y, Cheng CF, Luo YZ, Tian CW, Yang H, Liu BR, Chen MS, Chen YF, Liu SM (2015) C-reactive protein stimulates RAGE expression in human coronary artery endothelial cells in vitro via ROS generation and ERK/NF-kappaB activation. Acta Pharmacol Sin 36(4):440–447. doi:10.1038/aps.2014.163 ArticleCASPubMedPubMed Central Google Scholar
Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106(6):653–658 ArticlePubMed Google Scholar
Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D, Lieberman EH, Ganz P, Creager MA, Yeung AC et al (1995) Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 26(5):1235–1241. doi:10.1016/0735-1097(95)00327-4 ArticleCASPubMed Google Scholar
Takase B, Uehata A, Akima T, Nagai T, Nishioka T, Hamabe A, Satomura K, Ohsuzu F, Kurita A (1998) Endothelium-dependent flow-mediated vasodilation in coronary and brachial arteries in suspected coronary artery disease. Am J Cardiol 82(12):1535–1539, A1537–A1538. doi:10.1016/S0002-9149(98)00702-4
Dekker GA, Kraayenbrink AA, Zeeman GG, van Kamp GJ (1991) Increased plasma levels of the novel vasoconstrictor peptide endothelin in severe pre-eclampsia. Eur J Obstet Gynecol Reprod Biol 40(3):215–220 ArticleCASPubMed Google Scholar
Marsden PA, Brenner BM (1992) Transcriptional regulation of the endothelin-1 gene by TNF-alpha. Am J Physiol 262(4 Pt 1):C854–C861 CASPubMed Google Scholar
Schini VB, Hendrickson H, Heublein DM, Burnett JC Jr, Vanhoutte PM (1989) Thrombin enhances the release of endothelin from cultured porcine aortic endothelial cells. Eur J Pharmacol 165(2–3):333–334. doi:10.1016/0014-2999(89)90733-4 ArticleCASPubMed Google Scholar
Yoshizumi M, Kurihara H, Morita T, Yamashita T, Oh-hashi Y, Sugiyama T, Takaku F, Yanagisawa M, Masaki T, Yazaki Y (1990) Interleukin 1 increases the production of endothelin-1 by cultured endothelial cells. Biochem Biophys Res Commun 166(1):324–329. doi:10.1016/0006-291X(90)91948-R ArticleCASPubMed Google Scholar
Bruel A, Oxlund H (1996) Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis 127(2):155–165. doi:10.1016/S0021-9150(96)05947-3 ArticleCASPubMed Google Scholar
Semba RD, Nicklett EJ, Ferrucci L (2010) Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci 65(9):963–975. doi:10.1093/gerona/glq074 ArticlePubMed Google Scholar
Vlassara H, Fuh H, Makita Z, Krungkrai S, Cerami A, Bucala R (1992) Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci U S A 89(24):12043–12047 ArticleCASPubMedPubMed Central Google Scholar
Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M et al (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267(21):14987–14997 CASPubMed Google Scholar
Zieman SJ, Melenovsky V, Clattenburg L, Corretti MC, Capriotti A, Gerstenblith G, Kass DA (2007) Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J Hypertens 25(3):577–583. doi:10.1097/HJH.0b013e328013e7dd ArticleCASPubMed Google Scholar
Simm A, Munch G, Seif F, Schenk O, Heidland A, Richter H, Vamvakas S, Schinzel R (1997) Advanced glycation endproducts stimulate the MAP-kinase pathway in tubulus cell line LLC-PK1. FEBS Lett 410(2–3):481–484. doi:10.1016/S0014-5793(97)00644-3 ArticleCASPubMed Google Scholar
Diamanti-Kandarakis E, Piperi C, Kalofoutis A, Creatsas G (2005) Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 62(1):37–43. doi:10.1111/j.1365-2265.2004.02170.x ArticleCAS Google Scholar
Tinkel J, Hassanain H, Khouri SJ (2012) Cardiovascular antioxidant therapy: a review of supplements, pharmacotherapies, and mechanisms. Cardiol Rev 20(2):77–83. doi:10.1097/CRD.0b013e31823dbbad PubMed Google Scholar
Devaraj S, Kumaresan PR, Jialal I (2011) C-reactive protein induces release of both endothelial microparticles and circulating endothelial cells in vitro and in vivo: further evidence of endothelial dysfunction. Clin Chem 57(12):1757–1761. doi:10.1373/clinchem.2011.169839 ArticleCASPubMed Google Scholar
Kagan HM, Raghavan J, Hollander W (1981) Changes in aortic lysyl oxidase activity in diet-induced atherosclerosis in the rabbit. Arteriosclerosis 1(4):287–291 ArticleCASPubMed Google Scholar
Maki JM, Sormunen R, Lippo S, Kaarteenaho-Wiik R, Soininen R, Myllyharju J (2005) Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. Am J Pathol 167(4):927–936. doi:10.1016/S0002-9440(10)61183-2 ArticleCASPubMedPubMed Central Google Scholar
Bacon CR, Cary NR, Davenport AP (1996) Endothelin peptide and receptors in human atherosclerotic coronary artery and aorta. Circ Res 79(4):794–801 ArticleCASPubMed Google Scholar
Donato AJ, Gano LB, Eskurza I, Silver AE, Gates PE, Jablonski K, Seals DR (2009) Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol 297(1):H425–H432. doi:10.1152/ajpheart.00689.2008 ArticleCASPubMedPubMed Central Google Scholar