Cytochemical observations on the nervous system of adult Corrigia vitta | Journal of Helminthology | Cambridge Core (original) (raw)

Abstract

Adult Corrigia vitta (Trematoda: Dicrocoelidea) inhabit the pancreatic duct of the fieldmouse, Apodemus sylvaticus, where, in numbers, they may occlude the duct lumen and prevent the flow of pancreatic secretions. Enzyme histochemical and immunocytochemical techniques, in conjunction with confocal scanning laser microscopy, have been used to examine the localization and distribution of cholinergic. serotoninergic (5-HT, serotonin) and peptidergic components of the nervous system of the adult worm. All three classes of neuronal mediator showed a common pattern of staining, occurring throughout the central and peripheral nervous systems. Of the four peptide immunoreactivities (IR) demonstrated (pancreatic polypeptide (PP), peptide YY (PYY), substance P (SP), FMRFamide), PP-IR was the most predominant, occurring not only within the central ganglia and longitudinal nerve cords, but also in subtegumental plexuses and in fibres associated with the egg-forming apparatus. PYY and FMRFamide IRs were evident throughout the central and peripheral nervous systems; FMRFamide immunostaining, in particular, highlighted innervation of the ootype and immunoreactive cell bodies around the Mehlis' gland. Both SP- and 5-HT-IRs were restricted to the cerebral ganglia, ventral nerve cords and associated cell bodies. The distribution pattems of these peptides and 5-HT within the nervous system of C. vitta suggest they are likely to function as neuronal mediators. PP, PYY and FMRFamide may also serve in regulating egg production.

References

Basch, P. F. & Gupta, B. C. (1988) Immunocytochemical localization of regulatory peptides in six species of trematode parasites. Comparative Biochemistry and Physiology, 91C, 565–570.Google Scholar

Coons, A. H., Leduc, E. H. & Connolly, J. (1955) Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application in the hyperimmune rabbit. Journal of Experimental Medicine, 102, 49–60.CrossRefGoogle Scholar

Curry, W. J., Fairweather, I., Johnston, C. F., Halton, D. W. & Buchanan, K. D. (1989) Immunocytochemical demonstration of vertebrate neuropeptides in the earthworm Lumbricus terrestris (Annelida. Oligochaeta). Cell and Tissue Research, 257, 577–586.CrossRefGoogle Scholar

Cyr, D., Gruner, S. & Mettrick, D. F. (1983) Hymenolepis diminuta: uptake of 5-hydroxytryptamine (serotonin), glucose and changes in worm glycogen levels. Canadian Journal of Zoology, 61, 1469–1474.CrossRefGoogle Scholar

El-Salhy, M., Grimelius, L., Emson, P. C. & Falkmer, S. (1983) Polypeptide YY - and neuropeptide Y-immunoreactive cells and nerves in the endocrine and exocrine pancreas of some vertebrates: an onto-and phylogenetic study. Histochemical Journal, 19, 111–117.CrossRefGoogle Scholar

Fairweather, I., Maule, A. G., Mitchell, S. H., Johnston, C. F. & Halton, D. W. (1987) Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) in the nervous system of the liver fluke. Fasciola hepatica (Trermatoda, Digenea). Parasitology Research, 73, 255–258.CrossRefGoogle ScholarPubMed

Gabriél, R. (1990) Distribution of substance P-like immunoreactivity in nerves of the gastrointestinal tract of the frog Rana esculenta L. Histochemical Journal, 22, 560–566.CrossRefGoogle ScholarPubMed

Gomori, G. (1952) Microscopic Histochemistry, Principles and Practice. Chicago: University of Chicago Press.CrossRefGoogle Scholar

Gray, T. S. & Morley, J. E. (1986) Neuropeptide Y: anatomical distribution and possible function in the mammalian nervous system. Life Sciences, 38, 389–401.CrossRefGoogle ScholarPubMed

Grimmelikhuijzen, C. J. P. (1983) FMRFamide immunoreactivity is generally occurring in the nervous system of coelenterates. Histochmistry, 78, 361–381.CrossRefGoogle ScholarPubMed

Grimmelikhuijzen, C. J. P. (1986) FMRFamide-like peptides in the primitive nervous systems of coelenterates and complex nervous systems of higher animals. Handhook of Comparative Endocrinology and related Neuropeptide Mechanisms. vol 1 (ed. Stefano, G. B.) pp. 103–115. Boca Raton: Florida, CRC Press.Google Scholar

Grimmelikhuijzen, C. J. P. & Graff, D. (1985) Arg-Phe-amide-like peptides in the primitive nervous systems of coelenterates. Peptides, 6, 477–483.CrossRefGoogle ScholarPubMed

Gustafsson, M. K. S. (1987) Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of adult Schistosoma mansoni. Parasitology Research, 74, 168–174.CrossRefGoogle ScholarPubMed

Gustafsson, M. K. S. (1992) The neuroanatomy of parasitic flatworms. Advances in Neuroimmunology, 2, 267–285.CrossRefGoogle Scholar

Gustafsson, M. K. S. & Wikgren, M. C. A. (1989) Development of immunoreactivity to the invertebrate neuropeptide small cardiac peptide B in the tapeworm Diphyllobothrium dendriticum. Parasitology Research, 75, 396–400.CrossRefGoogle Scholar

Gustafsson, M. K. S., Wikgren, M. C., Karhi, T. J. & Schot, L. P. C. (1985) Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllohothrium dendriticum. Cell and Tissue Research, 240, 255–260.CrossRefGoogle ScholarPubMed

Gustafsson, M. K. S., Lehtonen, M. A. I. & Sundler, F. (1986) Immunocytochemical evidence for the presence of “mammalian” neurohormonal peptides in neurones of the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research, 243, 41–49.CrossRefGoogle ScholarPubMed

Halton, D. W., FairWeather, I., Shaw, C. & Johnston, C. F. (1990) Regulatory peptides in parasitic platyhelminths. Parasitology Today, 6, 284–290.CrossRefGoogle ScholarPubMed

Halton, D. W., Shaw, C., Maule, A. G., Johnston, C. F. & Fairweather, I. (1992) Peptidergic messengers: a new perspective of the nervous system of parasitic platyhelminths. Journal of Parasitology, 78, 179–193.CrossRefGoogle ScholarPubMed

Hirata, K. & Kanaseki, T. (1987) Substance P-like immunoreactive fibres in the frog taste organs. Experientia, 43, 386–389.CrossRefGoogle ScholarPubMed

Hökfelt, T., Hillhorn, D., Seroogy, K., Tsurio, Y., Ceccatelli, S., Lindh, B., Meister, B., Melander, T., Schalling, M., Bartfai, T. & Terenius, L. (1987) Coexistence of peptides with classical neurotransmitters. Experientia, 43, 768–780.CrossRefGoogle ScholarPubMed

Holmes, S. D. & Fairweather, I. (1984) Fasciola hepatica: the effects of neuropharmacological agents upon in vitro motility. Experimental Parasitology, 58, 194–208.CrossRefGoogle ScholarPubMed

iversen, L. L. (1984) Amino acids and peptides: fast and slow chemical signals in the nervous system? Proceedings of the Royal Society of London B, 221, 245–260.Google ScholarPubMed

Li, C. & Calabrese, R. L. (1987) FMRFamide-like substances in the leech, III. Biochemical characterisation and physiological effects. Journal of Neuroscience, 7, 595–603.CrossRefGoogle ScholarPubMed

Lundberg, J. M. & Hökfelt, T. (1983) Coexistence of peptides and classical neurotransmitters. In: Neurotransmitters in Action (ed. Bousfield, D.). Elsevier Biomed Press, Amsterdam, New York, Oxford, pp.104–118.Google Scholar

Magee, R. M., Fairweather, I., Johnston, C. F., Halton, D. W. & Shaw, C. (1989) Immunocytochemical demonstration of neuropeptides in the nervous system of the liver fluke. Fasciola hepatica (Trematoda, Digenea). Parasitology, 98, 227–238.CrossRefGoogle ScholarPubMed

Maule, A. G., Halton, D. W., Johnston, C. F., Fairweather, I. & Shaw, C. (1989) Immunocytochemical demonstration of neuropeptides in the fish-gill parasite, Diclidophora merlangi (Monogenoidea). International Journal for Parasitology, 19, 307–316.CrossRefGoogle ScholarPubMed

Maule, A. G., Halton, D. W., Johnston, C. F., Shaw, C. & Fairweather, I. (1990a) A cytochemical study of the serotoninergic, cholinergic and peptidergic components of the reproductive system in the monogenean parasite, Diclidophora merlangi. Parasitology Research, 76, 409–419.CrossRefGoogle ScholarPubMed

Maule, A. G., Halton, D. W., Johnston, C. F., Shaw, C. & Fairweather, I. (1990b) The serotoninergic, cholinergic and peptidergic components of the nervous system in the monogenean parasite, Diclidophora merlangi: a cytochemical study. Parasitology, 100, 255–273.CrossRefGoogle ScholarPubMed

McFarlane, I. D., Graff, D. & Grimmelikhuijzen, C. J. P. (1987) Excitatory actions of Antho-RFamide, an anthozoan neuropeptide on muscles and conducting systems in the sea-anemone Calliactus parasitica. Journal of Experimental Biology, 133, 157–168.CrossRefGoogle Scholar

McKay, D. M., Halton, D. W., Johnston, C. F., Fairweather, I. & Shaw, C. (1990) Occurrence and distribution of putative neurotransmitters in the frog-lung parasite Haplometra cylindracea (Trematoda: Digenea). Parasitology Research, 76, 509–517.CrossRefGoogle ScholarPubMed

McKay, D. M., Fairweather, I., Johnston, C. F., Shaw, C. & Halton, D. W. (1991) Immunocytochemical and radioimmunometrical demonstration of serotonin- and neuropeptide immunoreactivities in the adult rat tapeworm, Hymenolepis diminuta (Cestoda, Cyclophyllidea). Parasitology, 103, 275–289.CrossRefGoogle ScholarPubMed

McKay, D. M., Halton, D. W., Johnston, C. F., Shaw, C. & Fairweather, I., (1992) Cytochemical observations on cholinergic, serotoninergic and peptidergic neuronal pathways in Cephalochlamys namaquensis. Journal of Helminthology, 66, 205–212.CrossRefGoogle Scholar

Painter, S. D., Morley, J. S. & Price, D. A. (1982) Structure-activity relations of the molluscan neuropeptide FMRFamide on some molluscan muscles. Life Sciences, 31, 2471–2478.CrossRefGoogle ScholarPubMed

Price, D. A. & Greenberg, M. J. (1977) Structure of a molluscan cardioexcitatory neuropeptide. Science, 197, 670–671.CrossRefGoogle ScholarPubMed

Price, D. A., Davies, N. W., Doble, K. E. & Greenberg, M. J. (1987) The variety and distribution of the FMRFamide related peptides in molluscs. Zoological Science, 4, 395–410.Google Scholar

Rémy, C., Guy, J., Pelletier, G. & Boer, H. H. (1988) Immunohistological demonstration of a substance related to neuropeptide Y and FMRFamide in the cephalic and thoracic nervous system of the locust Locusta migratoria. Cell and Tissue Research, 254, 189–195.CrossRefGoogle ScholarPubMed

Richard, J., Klein, M. J. & Stoeckel, M. E. (1989) Neural and glandular localisation of substance P in Echinostoma caproni (Trematoda: Digenea). Parasitology Research, 75, 641–648.CrossRefGoogle ScholarPubMed

Skuce, P. J., Johnston, C. F., Fairweather, I., Halton, D. W. & Shaw, C. (1990) Immunoreactivity to the pancreatic polypeptide family in the nervous system of the adult human blood fluke, Schistosoma mansoni. Cell and Tissue Research, 261, 573–581.CrossRefGoogle Scholar

Sukhdeo, M. V. K. & Mettrick, D. F. (1987) Parasite behaviour: understanding platyhelminth responses. Advances in Parasitology, 26, 73–144.CrossRefGoogle ScholarPubMed

Sukhdeo, M. V. K., Hsu, S. C., Thompson, C. S. & Mettrick, D. F. (1984) Hymenolepis diminuta: behavioural effects of 5-HT, ACh, histamine and somatostatin. Journal of Parasitology, 70, 682–688.CrossRefGoogle ScholarPubMed

Thompson, C. S. & Mettrick, D. F. (1984) Neuromuscular physiology of Hymenolepis diminuta and H. microstoma (Cestoda). Parasitology, 89, 567–578.CrossRefGoogle Scholar

Thorndyke, M. C. & Whitfjeld, P. J. (1987) Vasoactive intestinal polypeptide-like immunoreactive tegumental cells in the digenean helminth Echinostoma liei: possible role in host-parasite interactions. General and Comparative Endocrinology, 68, 202–207.CrossRefGoogle ScholarPubMed

Wikgren, M. C., Reuter, M. & Gustafsson, M. K. S. (1986) Neuropeptides in free-living and parasitic flatworms (Platyhelminthes). An immunocytochemical study. Hydrobiologia, 132, 93–99.CrossRefGoogle Scholar