CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering (original) (raw)
Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol.31, 230–232 (2013). ArticleCAS Google Scholar
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science339, 819–823 (2013). ArticleCAS Google Scholar
DiCarlo, J.E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res.41, 4336–4343 (2013). ArticleCAS Google Scholar
Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol.31, 227–229 (2013). ArticleCAS Google Scholar
Jinek, M. et al. RNA-programmed genome editing in human cells. eLife2, e00471 (2013). Article Google Scholar
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science339, 823–826 (2013). ArticleCAS Google Scholar
Qi, L.S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell152, 1173–1183 (2013). ArticleCAS Google Scholar
Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science326, 1509–1512 (2009). ArticleCAS Google Scholar
Moscou, M.J. & Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors. Science326, 1501 (2009). ArticleCAS Google Scholar
Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature471, 602–607 (2011). ArticleCAS Google Scholar
Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA109, E2579–E2586 (2012). ArticleCAS Google Scholar
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science337, 816–821 (2012). ArticleCAS Google Scholar
Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res.39, 9275–9282 (2011). ArticleCAS Google Scholar
Bhaya, D., Davison, M. & Barrangou, R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet.45, 273–297 (2011). ArticleCAS Google Scholar
Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol.29, 149–153 (2011). Article Google Scholar
Fusco, D. et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol.13, 161–167 (2003). ArticleCAS Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). ArticleCAS Google Scholar
Maeder, M.L. et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat. Methods10, 243–245 (2013). ArticleCAS Google Scholar
Perez-Pinera, P. et al. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods10, 239–242 (2013). ArticleCAS Google Scholar
Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol.31, 233–239 (2013). ArticleCAS Google Scholar
Patwardhan, R.P. et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol.30, 265–270 (2012). ArticleCAS Google Scholar
Sanjana, N.E. et al. A transcription activator-like effector toolbox for genome engineering. Nat. Protoc.7, 171–192 (2012). ArticleCAS Google Scholar
Meckler, J.F. et al. Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res.41, 4118–4128 (2013). ArticleCAS Google Scholar
Reyon, D. et al. FLASH assembly of TAL effectors for high-throughput genome editing. Nat. Biotechnol.30, 460–465 (2012). ArticleCAS Google Scholar
Streubel, J., Blucher, C., Landgraf, A. & Boch, J. TAL effector RVD specificities and efficiencies. Nat. Biotechnol.30, 593–595 (2012). ArticleCAS Google Scholar
Porteus, M.H. & Carroll, D. Gene targeting using zinc finger nucleases. Nat. Biotechnol.23, 967–973 (2005). ArticleCAS Google Scholar
Pattanayak, V., Ramirez, C.L., Joung, J.K. & Liu, D.R. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat. Methods8, 765–770 (2011). ArticleCAS Google Scholar
Gabriel, R. et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol.29, 816–823 (2011). ArticleCAS Google Scholar
Certo, M.T. et al. Tracking genome engineering outcome at individual DNA breakpoints. Nat. Methods8, 671–676 (2011). ArticleCAS Google Scholar
Symington, L.S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet.45, 247–271 (2011). ArticleCAS Google Scholar