Structure and gating mechanism of the acetylcholine receptor pore (original) (raw)
Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 2001) Google Scholar
Karlin, A. Emerging structure of the nicotinic acetylcholine receptors. Nature Rev. Neurosci.3, 102–114 (2002) ArticleCAS Google Scholar
Corringer, J.-P., Le Novère, N. & Changeux, J.-P. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol.40, 431–458 (2000) ArticleCAS Google Scholar
Colquhoun, D., Shelly, C., Hatton, C., Unwin, N. & Sivilotti, L. Nicotinic acetylcholine receptors. Burger's Med. Chem. Drug Discov.2, 357–406 (2003) Google Scholar
Heuser, J. E. & Salpeter, S. R. Organization of acetylcholine receptors in quick-frozen, deep-etched and rotary-replicated Torpedo postsynaptic membrane. J. Cell Biol.82, 150–173 (1979) ArticleCAS Google Scholar
Brisson, A. & Unwin, P. N. T. Tubular crystals of acetylcholine receptor. J. Cell Biol.99, 1202–1211 (1984) ArticleCAS Google Scholar
Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature411, 269–276 (2001) ArticleADSCAS Google Scholar
Unwin, N., Miyazawa, A., Li, J. & Fujiyoshi, Y. Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the α subunits. J. Mol. Biol.319, 1165–1176 (2002) ArticleCAS Google Scholar
Unwin, N. Nicotinic acetylcholine receptor at 9 Å resolution. J. Mol. Biol.229, 1101–1124 (1993) ArticleCAS Google Scholar
Fujiyoshi, Y. et al. Development of a superfluid helium stage for high-resolution electron microscopy. Ultramicroscopy38, 241–251 (1991) Article Google Scholar
Beroukhim, R. & Unwin, N. Distortion correction of tubular crystals: Improvements in the acetylcholine receptor structure. Ultramicroscopy70, 57–81 (1997) ArticleCAS Google Scholar
Van Heel, M. Similarity measures between images. Ultramicroscopy21, 95–100 (1987) Article Google Scholar
Bottcher, B., Wynne, S. A. & Crowther, R. A. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature386, 88–91 (1997) ArticleADSCAS Google Scholar
Eisele, J.-L. et al. Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature366, 479–483 (1993) ArticleADSCAS Google Scholar
Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature373, 37–43 (1995) ArticleADSCAS Google Scholar
Wick, M. J. et al. Mutations of γ-aminobutyric acid and glycine receptors change alcohol cutoff: Evidence for an alcohol receptor? Proc. Natl Acad. Sci. USA95, 6504–6509 (1998) ArticleADSCAS Google Scholar
Mascia, M. P., Trudell, J. R. & Harris, R. A. Specific binding sites for alcohols and anesthetics on ligand-gated ion channels. Proc. Natl Acad. Sci. USA97, 9305–9310 (2000) ArticleADSCAS Google Scholar
Blanton, M. P. & Cohen, J. B. Identifying the protein-lipid interface of the Torpedo nicotinic acetylcholine receptor: Secondary structure implications. Biochemistry33, 2859–3872 (1994) ArticleCAS Google Scholar
Blanton, M. P., Dangott, L. J., Raja, S. K., Lala, A. K. & Cohen, J. B. Probing the structure of the nicotinic acetylcholine receptor ion channel with the uncharged photoactivatable compound [3H]diazofluorene. J. Biol. Chem.273, 8659–8668 (1998) ArticleCAS Google Scholar
Akabas, M. H., Kaufmann, C., Archdeacon, P. & Karlin, A. Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the α subunit. Neuron13, 919–927 (1994) ArticleCAS Google Scholar
Zhang, H. & Karlin, A. Contribution of the β subunit M2 segment to the ion-conducting pathway of the acetylcholine receptor. Biochemistry37, 7952–7964 (1998) ArticleCAS Google Scholar
Giraudat, J., Dennis, M., Heidmann, T., Chang, J. Y. & Changeux, J.-P. Structure of the high affinity binding site for noncompetitive blockers of the acetylcholine receptor: Serine-262 of the δ subunit is labelled by [3H]chlorpromazine. Proc. Natl Acad. Sci. USA83, 2719–2723 (1986) ArticleADSCAS Google Scholar
Hucho, F. L., Oberthur, W. & Lottspeich, F. The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices MII of the receptor subunits. FEBS Lett.205, 137–142 (1986) ArticleCAS Google Scholar
Imoto, K. et al. Location of a δ-subunit region determining ion transport through the acetylcholine receptor channel. Nature324, 670–674 (1986) ArticleADSCAS Google Scholar
Imoto, K. et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature335, 645–648 (1988) ArticleADSCAS Google Scholar
Charnet, P. et al. An open-channel blocker interacts with adjacent turns of α-helices in the nicotinic acetylcholine receptor. Neuron2, 87–95 (1990) Article Google Scholar
Villarroel, A., Herlitze, S., Koenen, M. & Sakmann, B. Location of a threonine residue in the α-subunit M2 transmembrane segment that determines the ion flow through the acetylcholine receptor channel. Proc. R. Soc. Lond. B243, 69–74 (1991) ArticleADSCAS Google Scholar
Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J.65, 2455–2460 (1993) ArticleCAS Google Scholar
Beckstein, O., Biggin, P. C. & Sansom, M. S. P. A hydrophobic gating mechanism for nanopores. J. Phys. Chem. B105, 12902–12905 (2001) ArticleCAS Google Scholar
Wilson, G. G. & Karlin, A. The location of the gate in the acetylcholine receptor channel. Neuron20, 1269–1281 (1998) ArticleCAS Google Scholar
White, B. H. & Cohen, J. B. Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist. J. Biol. Chem.267, 15770–15783 (1992) CASPubMed Google Scholar
Labarca, C. et al. Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature376, 514–516 (1995) ArticleADSCAS Google Scholar
Filatov, G. N. & White, M. M. The role of conserved leucines in the M2 domain of the acetylcholine receptor in gating. Mol. Pharmacol.48, 379–384 (1995) CASPubMed Google Scholar
Croxen, R. et al. Mutations in different functional domains of the human muscle acetylcholine receptor α subunit in patient with the slow-channel congenital myasthenic syndrome. Hum. Mol. Genet.6, 767–774 (1997) ArticleCAS Google Scholar
Grosman, C., Salamone, F. N., Sine, S. M. & Auerbach, A. The extracellular linker of muscle acetylcholine receptor channels is a gating control element. J. Gen. Physiol.116, 327–340 (2000) ArticleCAS Google Scholar
Ohno, K. et al. Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the ɛ subunit. Proc. Natl Acad. Sci. USA92, 758–762 (1995) ArticleADSCAS Google Scholar
Wang, H.-L. et al. Acetylcholine receptor M3 domain: Stereochemical and volume contributions to channel gating. Nature Neurosci.2, 226–233 (1999) ArticleCAS Google Scholar
Miyazawa, A., Fujiyoshi, Y., Stowell, M. & Unwin, N. Nicotinic acetylcholine receptor at 4.6 Å resolution: Transverse tunnels in the channel wall. J. Mol. Biol.288, 765–786 (1999) ArticleCAS Google Scholar
DeRosier, D. J. Correction of high-resolution data for curvature of the Ewald sphere. Ultramicroscopy81, 83–98 (2000) ArticleCAS Google Scholar
Klug, A., Crick, F. H. C. & Wykoff, H. W. Diffraction by helical structures. Acta Crystallogr.11, 199–213 (1958) ArticleCAS Google Scholar
DeRosier, D. J. & Moore, P. B. Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol.52, 355–369 (1970) ArticleCAS Google Scholar
Henderson, R. Image contrast in high-resolution electron microscopy of biological materials. Ultramicroscopy46, 1–18 (1992) ArticleCAS Google Scholar
Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991) Article Google Scholar
Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr.26, 283–291 (1993) ArticleCAS Google Scholar
Kraulis, P. J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr.24, 946–950 (1991) Article Google Scholar
Evans, S. V. SETOR: Hardware lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph.11, 134–138 (1993) ArticleCAS Google Scholar
Nicholls, A., Sharp, K. & Honig, B. A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. J. Comput. Chem.12, 435–445 (1991) ArticleCAS Google Scholar
Toyoshima, C. & Unwin, N. Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature336, 247–250 (1988) ArticleADSCAS Google Scholar