Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells (original) (raw)
References
DiCostanzo, D., Rosen, P. P., Gareen, I., Franklin, S. & Lesser, M. Prognosis in infiltrating lobular carcinoma. An analysis of “classical” and variant tumors. Am. J. Surg. Pathol.14, 12–23 (1990). ArticleCAS Google Scholar
Yamamoto, E., Kohama, G., Sunakawa, H., Iwai, M. & Hiratsuka, H. Mode of invasion, bleomycin sensitivity, and clinical course in squamous cell carcinoma of the oral cavity. Cancer51, 2175–2180 (1983). ArticleCAS Google Scholar
Macpherson, I. R. et al. p120-catenin is required for the collective invasion of squamous cell carcinoma cells via a phosphorylation-independent mechanism. Oncogene26, 5214–5228 (2007). ArticleCAS Google Scholar
Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature Cell Biol.9, 893–904 (2007). ArticleCAS Google Scholar
Nystrom, M. L. et al. Development of a quantitative method to analyse tumour cell invasion in organotypic culture. J. Pathol.205, 468–475 (2005). ArticleCAS Google Scholar
Costea, D. E., Kulasekara, K., Neppelberg, E., Johannessen, A. C. & Vintermyr, O. K. Species-specific fibroblasts required for triggering invasiveness of partially transformed oral keratinocytes. Am. J. Pathol.168, 1889–1897 (2006). ArticleCAS Google Scholar
Cukierman, E. Cell migration analyses within fibroblast-derived 3-D matrices. Methods Mol. Biol.294, 79–93 (2005). CASPubMed Google Scholar
Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S. & Sahai, E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol.16, 1515–1523 (2006). ArticleCAS Google Scholar
Egeblad, M., Littlepage, L. E. & Werb, Z. The fibroblastic coconspirator in cancer progression. Cold Spring Harb. Symp. Quant. Biol.70, 383–388 (2005). ArticleCAS Google Scholar
Kim, A., Lakshman, N. & Petroll, W. M. Quantitative assessment of local collagen matrix remodeling in 3-D culture: the role of Rho kinase. Exp. Cell Res.312, 3683–3692 (2006). ArticleCAS Google Scholar
Lakshman, N., Kim, A., Bayless, K. J., Davis, G. E. & Petroll, W. M. Rho plays a central role in regulating local cell-matrix mechanical interactions in 3D culture. Cell Motil. Cytoskeleton64, 434–445 (2007). ArticleCAS Google Scholar
Rhee, S. & Grinnell, F. P21-activated kinase 1: convergence point in PDGF- and LPA-stimulated collagen matrix contraction by human fibroblasts. J. Cell Biol.172, 423–432 (2006). ArticleCAS Google Scholar
Sahai, E. & Olson, M. F. Purification of TAT-C3 exoenzyme. Methods Enzymol.406, 128–140 (2006). ArticleCAS Google Scholar
Berdeaux, R. L., Diaz, B., Kim, L. & Martin, G. S. Active Rho is localized to podosomes induced by oncogenic Src and is required for their assembly and function. J. Cell Biol.166, 317–323 (2004). ArticleCAS Google Scholar
Hegerfeldt, Y., Tusch, M., Brocker, E. B. & Friedl, P. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer Res.62, 2125–2130 (2002). CASPubMed Google Scholar
Danen, E. H. et al. Integrins control motile strategy through a Rho-cofilin pathway. J. Cell Biol.169, 515–526 (2005). ArticleCAS Google Scholar
White, D. P., Caswell, P. T. & Norman, J. C. α v β3 and α5β1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J. Cell Biol.177, 515–525 (2007). ArticleCAS Google Scholar
Ren, X. D., Kiosses, W. B. & Schwartz, M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J.18, 578–585 (1999). ArticleCAS Google Scholar
Wilkinson, S., Paterson, H. F. & Marshall, C. J. Cdc42–MRCK and Rho–ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nature Cell Biol.7, 255–261 (2005). ArticleCAS Google Scholar
Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer2, 442–454 (2002). ArticleCAS Google Scholar
De Wever, O. et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J.18, 1016–1018 (2004). ArticleCAS Google Scholar
Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature432, 332–337 (2004). ArticleCAS Google Scholar
Orimo, A. & Weinberg, R. A. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle5, 1597–1601 (2006). ArticleCAS Google Scholar
Ronnov-Jessen, L., Petersen, O. W., Koteliansky, V. E. & Bissell, M. J. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Invest.95, 859–873 (1995). ArticleCAS Google Scholar
Kaariainen, E. et al. Switch to an invasive growth phase in melanoma is associated with tenascin-C, fibronectin, and procollagen-I forming specific channel structures for invasion. J. Pathol.210, 181–191 (2006). ArticleCAS Google Scholar
Provenzano, P. P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med.4, 38 (2006). Article Google Scholar
Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity25, 989–1001 (2006). ArticleCAS Google Scholar
Kitamura, T. et al. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genet.39, 467–475 (2007). ArticleCAS Google Scholar
Mackenzie, I. C. Growth of malignant oral epithelial stem cells after seeding into organotypical cultures of normal mucosa. J. Oral Pathol. Med.33, 71–78 (2004). Article Google Scholar
Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science294, 1708–1712 (2001). ArticleCAS Google Scholar
Hooper, S., Marshall, J. F. & Sahai, E. Tumor cell migration in three dimensions. Methods Enzymol.406, 625–643 (2006). ArticleCAS Google Scholar
Goulimari, P. et al. Gα12/13 is essential for directed cell migration and localized Rho–Dia1 function. J. Biol. Chem.280, 42242–42251 (2005). ArticleCAS Google Scholar