Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells (original) (raw)

References

  1. DiCostanzo, D., Rosen, P. P., Gareen, I., Franklin, S. & Lesser, M. Prognosis in infiltrating lobular carcinoma. An analysis of “classical” and variant tumors. Am. J. Surg. Pathol. 14, 12–23 (1990).
    Article CAS Google Scholar
  2. Yamamoto, E., Kohama, G., Sunakawa, H., Iwai, M. & Hiratsuka, H. Mode of invasion, bleomycin sensitivity, and clinical course in squamous cell carcinoma of the oral cavity. Cancer 51, 2175–2180 (1983).
    Article CAS Google Scholar
  3. Macpherson, I. R. et al. p120-catenin is required for the collective invasion of squamous cell carcinoma cells via a phosphorylation-independent mechanism. Oncogene 26, 5214–5228 (2007).
    Article CAS Google Scholar
  4. Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature Cell Biol. 9, 893–904 (2007).
    Article CAS Google Scholar
  5. Nystrom, M. L. et al. Development of a quantitative method to analyse tumour cell invasion in organotypic culture. J. Pathol. 205, 468–475 (2005).
    Article CAS Google Scholar
  6. Costea, D. E., Kulasekara, K., Neppelberg, E., Johannessen, A. C. & Vintermyr, O. K. Species-specific fibroblasts required for triggering invasiveness of partially transformed oral keratinocytes. Am. J. Pathol. 168, 1889–1897 (2006).
    Article CAS Google Scholar
  7. Cukierman, E. Cell migration analyses within fibroblast-derived 3-D matrices. Methods Mol. Biol. 294, 79–93 (2005).
    CAS PubMed Google Scholar
  8. Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S. & Sahai, E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 16, 1515–1523 (2006).
    Article CAS Google Scholar
  9. Egeblad, M., Littlepage, L. E. & Werb, Z. The fibroblastic coconspirator in cancer progression. Cold Spring Harb. Symp. Quant. Biol. 70, 383–388 (2005).
    Article CAS Google Scholar
  10. Kim, A., Lakshman, N. & Petroll, W. M. Quantitative assessment of local collagen matrix remodeling in 3-D culture: the role of Rho kinase. Exp. Cell Res. 312, 3683–3692 (2006).
    Article CAS Google Scholar
  11. Lakshman, N., Kim, A., Bayless, K. J., Davis, G. E. & Petroll, W. M. Rho plays a central role in regulating local cell-matrix mechanical interactions in 3D culture. Cell Motil. Cytoskeleton 64, 434–445 (2007).
    Article CAS Google Scholar
  12. Rhee, S. & Grinnell, F. P21-activated kinase 1: convergence point in PDGF- and LPA-stimulated collagen matrix contraction by human fibroblasts. J. Cell Biol. 172, 423–432 (2006).
    Article CAS Google Scholar
  13. Sahai, E. & Olson, M. F. Purification of TAT-C3 exoenzyme. Methods Enzymol. 406, 128–140 (2006).
    Article CAS Google Scholar
  14. Berdeaux, R. L., Diaz, B., Kim, L. & Martin, G. S. Active Rho is localized to podosomes induced by oncogenic Src and is required for their assembly and function. J. Cell Biol. 166, 317–323 (2004).
    Article CAS Google Scholar
  15. Hegerfeldt, Y., Tusch, M., Brocker, E. B. & Friedl, P. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer Res. 62, 2125–2130 (2002).
    CAS PubMed Google Scholar
  16. Danen, E. H. et al. Integrins control motile strategy through a Rho-cofilin pathway. J. Cell Biol. 169, 515–526 (2005).
    Article CAS Google Scholar
  17. White, D. P., Caswell, P. T. & Norman, J. C. α v β3 and α5β1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J. Cell Biol. 177, 515–525 (2007).
    Article CAS Google Scholar
  18. Ren, X. D., Kiosses, W. B. & Schwartz, M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).
    Article CAS Google Scholar
  19. Wilkinson, S., Paterson, H. F. & Marshall, C. J. Cdc42–MRCK and Rho–ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nature Cell Biol. 7, 255–261 (2005).
    Article CAS Google Scholar
  20. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).
    Article CAS Google Scholar
  21. De Wever, O. et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J. 18, 1016–1018 (2004).
    Article CAS Google Scholar
  22. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).
    Article CAS Google Scholar
  23. Orimo, A. & Weinberg, R. A. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5, 1597–1601 (2006).
    Article CAS Google Scholar
  24. Ronnov-Jessen, L., Petersen, O. W., Koteliansky, V. E. & Bissell, M. J. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Invest. 95, 859–873 (1995).
    Article CAS Google Scholar
  25. Kaariainen, E. et al. Switch to an invasive growth phase in melanoma is associated with tenascin-C, fibronectin, and procollagen-I forming specific channel structures for invasion. J. Pathol. 210, 181–191 (2006).
    Article CAS Google Scholar
  26. Provenzano, P. P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).
    Article Google Scholar
  27. Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).
    Article CAS Google Scholar
  28. Kitamura, T. et al. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genet. 39, 467–475 (2007).
    Article CAS Google Scholar
  29. Mackenzie, I. C. Growth of malignant oral epithelial stem cells after seeding into organotypical cultures of normal mucosa. J. Oral Pathol. Med. 33, 71–78 (2004).
    Article Google Scholar
  30. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).
    Article CAS Google Scholar
  31. Hooper, S., Marshall, J. F. & Sahai, E. Tumor cell migration in three dimensions. Methods Enzymol. 406, 625–643 (2006).
    Article CAS Google Scholar
  32. Goulimari, P. et al. Gα12/13 is essential for directed cell migration and localized Rho–Dia1 function. J. Biol. Chem. 280, 42242–42251 (2005).
    Article CAS Google Scholar

Download references