Batlle, R. et al. Snail1 controls TGF-β responsiveness and differentiation of mesenchymal stem cells. Oncogene32, 3381–3389 (2013). ArticleCASPubMed Google Scholar
Barrallo-Gimeno, A. & Nieto, M. A. Evolutionary history of the Snail/Scratch superfamily. Trends Genet.25, 248–252 (2009). ArticleCASPubMed Google Scholar
Nieto, M. A. Epithelial plasticity: a common theme in embryonic and cancer cells. Science342, 1234850 (2013). ArticleCASPubMed Google Scholar
Puisieux, A., Brabletz, T. & Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol.16, 488–494 (2014). ArticleCASPubMed Google Scholar
Desgrosellier, J. S. et al. Integrin alphavbeta3 drives slug activation and stemness in the pregnant and neoplastic mammary gland. Dev. Cell30, 295–308 (2014). ArticleCASPubMedPubMed Central Google Scholar
Horvay, K. et al. Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO J.34, 1319–1335 (2015). ArticleCASPubMedPubMed Central Google Scholar
Hwang, W. L. et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat. Cell Biol.16, 268–280 (2014). ArticleCASPubMed Google Scholar
Lin, Y. et al. Snail1-dependent control of embryonic stem cell pluripotency and lineage commitment. Nat. Commun.5, 3070 (2014). ArticleCASPubMed Google Scholar
Oram, K. F., Carver, E. A. & Gridley, T. Slug expression during organogenesis in mice. Anat. Rec. A Discov. Mol. Cell. Evol. Biol.271, 189–191 (2003). ArticleCASPubMed Google Scholar
Chen, Y. & Gridley, T. Compensatory regulation of the Snai1 and Snai2 genes during chondrogenesis. J. Bone Miner. Res.28, 1412–1421 (2013). ArticleCASPubMed Google Scholar
Chen, Y. & Gridley, T. The SNAI1 and SNAI2 proteins occupy their own and each other’s promoter during chondrogenesis. Biochem. Biophys. Res. Commun.435, 356–360 (2013). ArticleCASPubMedPubMed Central Google Scholar
Perez-Mancera, P. A. et al. Adipose tissue mass is modulated by SLUG (SNAI2). Hum. Mol. Genet.16, 2972–2986 (2007). ArticleCASPubMed Google Scholar
Worthley, D. L. et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell160, 269–284 (2015). ArticleCASPubMedPubMed Central Google Scholar
Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell15, 154–168 (2014). ArticleCASPubMedPubMed Central Google Scholar
Day, T. F., Guo, X., Garrett-Beal, L. & Yang, Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell8, 739–750 (2005). ArticleCASPubMed Google Scholar
Liu, Y. et al. Isolation of murine bone marrow derived mesenchymal stem cells using Twist2 Cre transgenic mice. Bone47, 916–925 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tang, Y. et al. MT1-MMP-dependent control of skeletal stem cell commitment via a beta1-integrin/YAP/TAZ signaling axis. Dev. Cell25, 402–416 (2013). ArticleCASPubMedPubMed Central Google Scholar
Murray, S. A., Oram, K. F. & Gridley, T. Multiple functions of Snail family genes during palate development in mice. Development134, 1789–1797 (2007). ArticleCASPubMed Google Scholar
Karsenty, G., Kronenberg, H. M. & Settembre, C. Genetic control of bone formation. Annu. Rev. Cell Dev. Biol.25, 629–648 (2009). ArticleCASPubMed Google Scholar
Tang, Y. et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med.15, 757–765 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mizoguchi, T. et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev. Cell29, 340–349 (2014). ArticleCASPubMedPubMed Central Google Scholar
Zhou, X. et al. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc. Natl Acad. Sci. USA107, 12919–12924 (2010). ArticlePubMedPubMed Central Google Scholar
Liu, Y. et al. Osterix-cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma. PLoS ONE8, e71318 (2013). ArticleCASPubMedPubMed Central Google Scholar
Rodda, S. J. & McMahon, A. P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development133, 3231–3244 (2006). ArticleCASPubMed Google Scholar
Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell147, 759–772 (2011). ArticleCASPubMed Google Scholar
Hong, J. H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science309, 1074–1078 (2005). ArticleCASPubMed Google Scholar
Varelas, X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development141, 1614–1626 (2014). ArticleCASPubMed Google Scholar
Zaidi, S. K. et al. Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J.23, 790–799 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ducy, P. & Karsenty, G. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol. Cell Biol.15, 1858–1869 (1995). ArticleCASPubMedPubMed Central Google Scholar
Zanconato, F. et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol.17, 1218–1227 (2015). ArticleCASPubMedPubMed Central Google Scholar
Galli, G. G. et al. YAP drives growth by controlling transcriptional pause release from dynamic enhancers. Mol. Cell60, 328–337 (2015). ArticleCASPubMedPubMed Central Google Scholar
Nishio, Y. et al. Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene372, 62–70 (2006). ArticleCASPubMed Google Scholar
Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell89, 747–754 (1997). ArticleCASPubMed Google Scholar
Harada, H. et al. Cbfa1 isoforms exert functional differences in osteoblast differentiation. J. Biol. Chem.274, 6972–6978 (1999). ArticleCASPubMed Google Scholar
Mingot, J. M., Vega, S., Maestro, B., Sanz, J. M. & Nieto, M. A. Characterization of Snail nuclear import pathways as representatives of C2H2 zinc finger transcription factors. J. Cell Sci.122, 1452–1460 (2009). ArticleCASPubMed Google Scholar
Choi, S. et al. Structural basis for the selective nuclear import of the C2H2 zinc-finger protein Snail by importin beta. Acta Crystallogr. D Biol. Crystallogr.70, 1050–1060 (2014). ArticleCASPubMed Google Scholar
Isern, J. et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife3, e03696 (2014). ArticleCASPubMedPubMed Central Google Scholar
Ono, N., Ono, W., Nagasawa, T. & Kronenberg, H. M. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat. Cell Biol.16, 1157–1167 (2014). ArticleCASPubMedPubMed Central Google Scholar
de Frutos, C. A. et al. Snail1 controls bone mass by regulating Runx2 and VDR expression during osteoblast differentiation. EMBO J.28, 686–696 (2009). ArticleCASPubMedPubMed Central Google Scholar
Park, S. J. et al. The transcription factor snail regulates osteogenic differentiation by repressing Runx2 expression. Bone46, 1498–1507 (2010). ArticleCASPubMed Google Scholar
Wang, W. et al. Defining the protein-protein interaction network of the human hippo pathway. Mol. Cell Proteomics13, 119–131 (2014). ArticleCASPubMed Google Scholar
Ivkovic, S. et al. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development130, 2779–2791 (2003). ArticleCASPubMed Google Scholar
Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell108, 17–29 (2002). ArticleCASPubMed Google Scholar
Rowe, R. G. et al. Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. J. Cell Biol.184, 399–408 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yu, K. et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development130, 3063–3074 (2003). ArticleCASPubMed Google Scholar
Wu, X. et al. Inhibition of Sca-1-positive skeletal stem cell recruitment by alendronate blunts the anabolic effects of parathyroid hormone on bone remodeling. Cell Stem Cell7, 571–580 (2010). ArticleCASPubMedPubMed Central Google Scholar
Anjos-Afonso, F. & Bonnet, D. Isolation, culture, and differentiation potential of mouse marrow stromal cells. Curr. Protoc. Stem Cell Biol. (2008)10.1002/9780470151808.sc02b03s7.
Murdoch, A. D. et al. Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage. Stem Cells25, 2786–2796 (2007). ArticleCASPubMed Google Scholar
McLeod, M. J. Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology22, 299–301 (1980). ArticleCASPubMed Google Scholar
Tang, Y., Liu, Z., Zhao, L., Clemens, T. L. & Cao, X. Smad7 stabilizes beta-catenin binding to E-cadherin complex and promotes cell-cell adhesion. J. Biol. Chem.283, 23956–23963 (2008). ArticleCASPubMedPubMed Central Google Scholar