Emerging roles of ATF2 and the dynamic AP1 network in cancer (original) (raw)
Lee, W., Mitchell, P. & Tjian, R. Purified transcription factor AP1 interacts with TPA-inducible enhancer elements. Cell49, 741–752 (1987). ArticleCASPubMed Google Scholar
Angel, P. et al. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell49, 729–739 (1987). ArticleCASPubMed Google Scholar
Eferl, R. & Wagner, E. F. AP1: a double-edged sword in tumorigenesis. Nature Rev. Cancer3, 859–868 (2003). ArticleCAS Google Scholar
Angel, P. & Karin, M. The role of Jun, Fos and the AP1 complex in cell-proliferation and transformation. Biochem. Biophys. Acta1072, 129–157 (1991). CASPubMed Google Scholar
Maki, Y., Bos, C., Davis, C., Starbuck, M. & Vogt, P. Avian sarcoma virus 17 carries the jun oncogene. Proc. Natl Acad. Sci. USA84, 2848–2852 (1987). ArticleCASPubMedPubMed Central Google Scholar
Mechta-Grigoriou, F., Gerald, D. & Yaniv, M. The mammalian Jun proteins: redundancy and specificity. Oncogene20, 2378–2389 (2001). ArticleCASPubMed Google Scholar
Bakiri, L., Lallemand, D., Bossy-Wetzel, E. & Yaniv, M. Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J.19, 2056–2068 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mariani, O. et al. JUN Oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell11, 361–374 (2007). ArticleCASPubMed Google Scholar
Shaulian, E. & Karin, M. AP1 in cell proliferation and survival. Oncogene20, 2390–2400 (2001). ArticleCASPubMed Google Scholar
Angel, P., Hattori, K., Smeal, T. & Karin, M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP1. Cell55, 875–885 (1988). ArticleCASPubMed Google Scholar
van Dam, H. & Castellazzi, M. Distinct roles of Jun:Fos and Jun:ATF dimers in oncogenesis. Oncogene20, 2453–2464 (2001). ArticleCASPubMed Google Scholar
Sng, J. C. G., Taniura, H. & Yoneda, Y. A tale of early response genes. Biol. Pharm. Bull.27, 606–612 (2004). ArticleCASPubMed Google Scholar
Whitmarsh, A. J. & Davis, R. J. Regulation of transcription factor function by phosphorylation. Cell. Mol. Life Sci.57, 1172–1183 (2000). ArticleCASPubMed Google Scholar
Katabami, M. et al. Cyclin A is a c-Jun target gene and is necessary for c-Jun-induced anchorage-independent growth in RAT1a cells. J. Biol. Chem.280, 16728–16738 (2005). ArticleCASPubMed Google Scholar
Weitzman, J. B., Fiette, L., Matsuo, K. & Yaniv, M. JunD protects cells from p53-dependent senescence and apoptosis. Mol. Cell6, 1109–1119 (2000). ArticleCASPubMed Google Scholar
Ameyar-Zazoua, M. et al. AP1 dimers regulate transcription of the p14/p19ARF tumor suppressor gene. Oncogene24, 2298–306 (2005). ArticleCASPubMed Google Scholar
Deng, T. & Karin, M. JunB differs from c-Jun in its DNA-binding and dimerization domains, and represses c-Jun by formation of inactive heterodimers. Genes Dev.7, 479–490 (1993). ArticleCASPubMed Google Scholar
Aggarwal, B. B. & Gehlot, P. Inflammation and cancer: how friendly is the relationship for cancer patients? Curr. Opin. Pharmacol.9, 351–369 (2009). ArticleCASPubMedPubMed Central Google Scholar
Passegue, E. & Wagner, E. F. JunB suppresses cell proliferation by transcriptional activation of p16INK4a expression. EMBO J.19, 2969–2979 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ryseck, R. P., Hirai, S. I., Yaniv, M. & Bravo, R. Transcriptional activation of c-jun during the G0/G1 transition in mouse fibroblasts. Nature334, 535–537 (1988). ArticleCASPubMed Google Scholar
Mayo, M. W., Steelman, L. S. & McCubrey, J. A. Phorbol esters support the proliferation of a hematopoietic cell line by upregulating c-jun expression. Oncogene9, 1999–2008 (1994). CASPubMed Google Scholar
Zhang, Y. et al. Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model. BMC Cancer7, 145 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Jin, X. et al. Blockade of AP1 activity by dominant-negative TAM67 can abrogate the oncogenic phenotype in latent membrane protein 1-positive human nasopharyngeal carcinoma. Mol. Carcinog.46, 901–911 (2007). ArticleCASPubMed Google Scholar
Shimizu, Y. et al. Growth inhibition of non-small cell lung cancer cells by AP1 blockade using a cJun dominant-negative mutant. Br. J. Cancer98, 915–922 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shen, Q. et al. The AP1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene27, 366–377 (2008). ArticleCASPubMed Google Scholar
Suto, R. et al. Dominant-negative mutant of c-Jun gene transfer: a novel therapeutic strategy for colorectal cancer. Gene Therapy11, 187–193 (2004). ArticleCASPubMed Google Scholar
Passegue, E., Jochum, W., Behrens, A., Ricci, R. & Wagner, E. F. JunB can substitute for Jun in mouse development and cell proliferation. Nature Genet.30, 158–166 (2002). ArticleCASPubMed Google Scholar
Agarwal, S. K. et al. Transcription factor JunD, deprived of menin, switches from growth suppressor to growth promoter. Proc. Natl Acad. Sci. USA100, 10770–10775 (2003). ArticleCASPubMedPubMed Central Google Scholar
Laine, A. & Ronai, Z. Ubiquitin chains in the ladder of MAPK signaling. Sci. STKE281, re5 (2005). Google Scholar
Dérijard, B. et al. JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell76, 1025–1037 (1994). ArticlePubMed Google Scholar
Sabapathy, K. et al. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol. Cell15, 713–725 (2004). ArticleCASPubMed Google Scholar
Sabapathy, K. & Wagner, E. F. JNK2: a negative regulator of cellular proliferation. Cell Cycle3, 1520–1523 (2004). ArticleCASPubMed Google Scholar
Lively, T. N., Ferguson, H. A., Galasinski, S. K., Seto, A. G. & Goodrich, J. A. c-Jun binds the N terminus of Human TAFII250 to derepress RNA polymerase II transcription in vitro. J. Biol. Chem.276, 25582–25588 (2001). ArticleCASPubMed Google Scholar
Franklin, C. C., McCulloch, A. V. & Kraft, A. S. In vitro association between the Jun protein family and the general transcription factors, TBP and TFIIB. Biochem. J.305, 967–974 (1995). ArticleCASPubMedPubMed Central Google Scholar
Karin, M., Liu, Z. G. & Zandi, E. AP1 function and regulation. Curr. Opin. Cell Biol.9, 240–246 (1997). ArticleCASPubMed Google Scholar
Weiss, C. et al. JNK phosphorylation relieves HDAC3-dependent suppression of the transcriptional activity of c-Jun. EMBO J.22, 3686–3695 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kallunki, T., Deng, T., Hibi, M. & Karin, M. c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell87, 929–939 (1996). ArticleCASPubMed Google Scholar
Gallo, A. et al. Menin uncouples Elk-1, JunD and c-Jun phosphorylation from MAP kinase activation. Oncogene21, 6434–6445 (2002). ArticleCASPubMed Google Scholar
Morton, S., Davis, R. J., McLaren, A. & Cohen, P. A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun. EMBO J.22, 3876–3886 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bhoumik, A. & Ronai, Z. ATF2: a transcription factor that elicits oncogenic or tumor suppressor activities. Cell Cycle7, 2341–2345 (2008). ArticleCASPubMed Google Scholar
Wei, W., Jin, J., Schlisio, S., Harper, J. W. & Kaelin, W. G. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell8, 25–33 (2005). ArticleCASPubMed Google Scholar
Nateri, A. S., Riera-Sans, L., Da Costa, C. & Behrens, A. The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science303, 1374–1378 (2004). ArticleCASPubMed Google Scholar
Fuchs, S. Y., Dolan, L., Davis, R. J. & Ronai, Z. Phosphorylation-dependent targeting of c-Jun ubiquitination by Jun N-kinase. Oncogene13, 1531–1535 (1996). CASPubMed Google Scholar
Cheng, J., Perkins, N. D. & Yeh, E. T. Differential regulation of c-Jun-dependent transcription by SUMO-specific proteases. J. Biol. Chem.280, 14492–14498 (2005). ArticleCASPubMed Google Scholar
Farras, R., Bossis, G., Andermarcher, E., Jariel-Encontre, I. & Piechaczyk, M. Mechanisms of delivery of ubiquitylated proteins to the proteasome: new target for anti-cancer therapy? Crit. Rev. Oncol. Hematol.54, 31–51 (2005). ArticlePubMed Google Scholar
Garaude, J. et al. SUMOylation regulates the transcriptional activity of JunB in T lymphocytes. J. Immunol.180, 5983–5990 (2008). ArticleCASPubMed Google Scholar
Musti, A. M., Treier, M., Peverali, F. A. & Bohmann, D. Differential regulation of c-Jun and JunD by ubiquitin-dependent protein degradation. Biol. Chem.377, 619–624 (1996). CASPubMed Google Scholar
Tulchinsky, E. Fos family members: regulation, structure and role in oncogenic transformation. Histol. Histopathol.15, 921–928 (2000). CASPubMed Google Scholar
Halazonetis, T. D., Georgopoulos, K., Greenberg, M. E. & Leder, P. c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell55, 917–924 (1988). ArticleCASPubMed Google Scholar
Greenberg, M. E. & Ziff, E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature311, 433–438 (1984). ArticleCASPubMed Google Scholar
Kovary, K. & Bravo, R. The jun and fos protein families are both required for cell cycle progression in fibroblasts. Mol. Cell. Biol.11, 4466–4472 (1991). ArticleCASPubMedPubMed Central Google Scholar
Adiseshaiah, P., Peddakama, S., Zhang, Q., Kalvakolanu, D. V. & Reddy, S. P. Mitogen regulated induction of FRA-1 proto-oncogene is controlled by the transcription factors binding to both serum and TPA response elements. Oncogene24, 4193–4205 (2005). ArticleCASPubMed Google Scholar
Basbous, J., Jariel-Encontre, I., Gomard, T., Bossis, G. & Piechaczyk, M. Ubiquitin-independent- versus ubiquitin-dependent proteasomal degradation of the c-Fos and Fra-1 transcription factors: is there a unique answer? Biochimie90, 296–305 (2008). ArticleCASPubMed Google Scholar
Pellegrino, M. J. & Stork, P. J. Sustained activation of extracellular signal-regulated kinase by nerve growth factor regulates c-fos protein stabilization and transactivation in PC12 cells. J. Neurochem.99, 1480–1493 (2006). ArticleCASPubMed Google Scholar
Tanos, T. et al. Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP1 response to UV light. J. Biol. Chem.280, 18842–18852 (2005). ArticleCASPubMed Google Scholar
Basbous, J., Chalbos, D., Hipskind, R., Jariel-Encontre, I. & Piechaczyk, M. Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer. Mol. Cell. Biol.27, 3936–3950 (2007). ArticleCASPubMedPubMed Central Google Scholar
Malnou, C. E. et al. Heterodimerization with Jun family members regulates c-Fos nucleocytoplasmic traffic. J. Biol. Chem.282, 31046–31059 (2007). ArticleCASPubMed Google Scholar
Hai, T. & Hartman, M. G. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene273, 1–11 (2001). ArticleCASPubMed Google Scholar
Bhoumik, A., Lopez-Bergami, P. & Ronai, Z. ATF2 on the double — activating transcription factor and DNA damage response protein. Pigment Cell Res.20, 498–506 (2007). ArticleCASPubMedPubMed Central Google Scholar
Breitwieser, W. et al. Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells. Genes Dev.21, 2069–2082 (2007). ArticleCASPubMedPubMed Central Google Scholar
Takeda, J. et al. Expression of the CRE-BP1 transcriptional regulator binding to the cyclic AMP response element in central nervous system, regenerating liver, and human tumors. Oncogene6, 1009–1014 (1991). CASPubMed Google Scholar
Kim, H. S., Choi, E. S., Shin, J. A., Jang, Y. K. & Park, S. D. Regulation of Swi6/HP1-dependent heterochromatin assembly by cooperation of components of the mitogen-activated protein kinase pathway and a histone deacetylase Clr6. J. Biol. Chem.279, 42850–42859 (2004). ArticleCASPubMed Google Scholar
Bruhat, A. et al. ATF2 is required for amino acid-regulated transcription by orchestrating specific histone acetylation. Nucleic Acids Res.35, 1312–1321 (2007). ArticleCASPubMedPubMed Central Google Scholar
Agelopoulos, M. & Thanos, D. Epigenetic determination of a cell-specific gene expression program by ATF-2 and the histone variant macroH2A. EMBO J.25, 4843–4853 (2006). ArticleCASPubMedPubMed Central Google Scholar
Maekawa, T. et al. Mouse ATF-2 null mutants display features of a severe type of meconium aspiration syndrome. J. Biol. Chem.274, 17813–17819 (1999). ArticleCASPubMed Google Scholar
Papassava, P. et al. Overexpression of activating transcription factor-2 is required for tumor growth and progression in mouse skin tumors. Cancer Res.64, 8573–8584 (2004). ArticleCASPubMed Google Scholar
Zoumpourlis, V. et al. High levels of phosphorylated c-Jun, Fra-1, Fra-2 and ATF-2 proteins correlate with malignant phenotypes in the multistage mouse skin carcinogenesis model. Oncogene19, 4011–4021 (2000). ArticleCASPubMed Google Scholar
Woo, I. S., Kohno, T., Inoue, K., Ishii, S. & Yokota, J. Infrequent mutations of the activating transcription factor-2 gene in human lung cancer, neuroblastoma and breast cancer. Int. J. Oncol.20, 527–531 (2002). CASPubMed Google Scholar
Song, H., Ki, S. H., Kim, S. G. & Moon, A. Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res.66, 10487–10496 (2006). ArticleCASPubMed Google Scholar
Reimold, A. M. et al. Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature379, 262–265 (1996). ArticleCASPubMed Google Scholar
Ozawa, K., Sudo, T., Soeda, E., Yoshida, M. C. & Ishii, S. Assignment of the human CREB2 (CRE-BP1) gene to 2q32. Genomics10, 1103–1104 (1991). ArticleCASPubMed Google Scholar
Landschulz, W. H., Johnson, P. F. & McKnight, S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science240, 1759–1764 (1988). ArticleCASPubMed Google Scholar
Liu, H. et al. Mutual regulation of c-Jun and ATF2 by transcriptional activation and subcellular localization. EMBO J.25, 1058–1069 (2006). ArticleCASPubMedPubMed Central Google Scholar
Li, X. Y. & Green, M. R. Intramolecular inhibition of activating transcription factor-2 function by its DNA-binding domain. Genes Dev.10, 517–527 (1996). ArticleCASPubMed Google Scholar
Ouwens, D. M. et al. Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. EMBO J.21, 3782–3793 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gupta, S., Campbell, D., Derijard, B. & Davis, R. J. Transcription factor ATF2: regulation by the JNK signal transduction pathway. Science267, 389–393 (1995). ArticleCASPubMed Google Scholar
Firestein, R. & Feuerstein, N. Association of activating transcription factor 2 (ATF2) with the ubiquitin-conjugating enzyme hUBC9. Implication of the ubiquitin/proteasome pathway in regulation of ATF2 in T cells. J. Biol. Chem.273, 5892–5902 (1998). ArticleCASPubMed Google Scholar
Fuchs, S. Y., Tappin, I. & Ronai, Z. Stability of the ATF2 transcription factor is regulated by phosphorylation and dephosphorylation. J. Biol. Chem.275, 12560–12564 (2000). ArticleCASPubMed Google Scholar
Yamasaki, T., Takahashi, A., Pan, J., Yamaguchi, N. & Yokoyama, K. K. Phosphorylation of activation transcription factor-2 at serine 121 by protein kinase C controls c-Jun-mediated activation of transcription. J. Biol. Chem.284, 8567–8581 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hai, T. W., Liu, F., Coukos, W. J. & Green, M. R. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev.3, 2083–2090 (1989). ArticleCASPubMed Google Scholar
Ronai, Z. et al. ATF2 confers radiation resistance to human melanoma cells. Oncogene16, 523–531 (1998). ArticleCASPubMed Google Scholar
Ma, Q. et al. Activating transcription factor 2 controls Bcl-2 promoter activity in growth plate chondrocytes. J. Cell Biochem.101, 477–487 (2007). ArticleCASPubMed Google Scholar
Zenz, R. et al. c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. Dev. Cell4, 879–889 (2003). ArticleCASPubMed Google Scholar
Shaulian, E. & Karin, M. AP1 as a regulator of cell life and death. Nature Cell Biol.4, E131–E136 (2002). ArticleCASPubMed Google Scholar
Johnson, R., Spiegelman, B., Hanahan, D. & Wisdom, R. Cellular transformation and malignancy induced by ras require c-jun. Mol. Cell. Biol.16, 4504–4511 (1996). ArticleCASPubMedPubMed Central Google Scholar
Behrens, A., Jochum, W., Sibilia, M. & Wagner, E. F. Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene19, 2657–2663 (2000). ArticleCASPubMed Google Scholar
Binetruy, B., Smeal, T. & Karin, M. Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature351, 122–127 (1991). ArticleCASPubMed Google Scholar
Talotta, F. et al. An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP1 activity in RAS transformation. Oncogene28, 73–84 (2009). ArticleCASPubMed Google Scholar
Milde-Langosch, K. The Fos family of transcription factors and their role in tumourigenesis. Eur. J. Cancer41, 2449–2461 (2005). ArticleCASPubMed Google Scholar
Bergers, G., Graninger, P., Braselmann, S., Wrighton, C. & Busslinger, M. Transcriptional activation of the fra-1 gene by AP1 is mediated by regulatory sequences in the first intron. Mol. Cell. Biol.15, 3748–3758 (1995). ArticleCASPubMedPubMed Central Google Scholar
Jenuwein, T. & Muller, R. Structure-function analysis of fos protein: a single amino acid change activates the immortalizing potential of v-fos. Cell48, 647–657 (1987). ArticleCASPubMed Google Scholar
Sunters, A., McCluskey, J. & Grigoriadis, A. E. Control of cell cycle gene expression in bone development and during c-Fos-induced osteosarcoma formation. Dev. Genet.22, 386–397 (1998). ArticleCASPubMed Google Scholar
Ledwith, B. J., Manam, S., Kraynak, A. R., Nichols, W. W. & Bradley, M. O. Antisense-fos RNA causes partial reversion of the transformed phenotypes induced by the c-Ha-ras oncogene. Mol. Cell. Biol.10, 1545–1555 (1990). ArticleCASPubMedPubMed Central Google Scholar
Olive, M. et al. A dominant negative to activation protein-1 (AP1) that abolishes DNA binding and inhibits oncogenesis. J. Biol. Chem.272, 18586–18594 (1997). ArticleCASPubMed Google Scholar
Jochum, W. et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature Med.6, 980–984 (2000). ArticleCASPubMed Google Scholar
Mikula, M. et al. The proto-oncoprotein c-Fos negatively regulates hepatocellular tumorigenesis. Oncogene22, 6725–6738 (2003). ArticleCASPubMed Google Scholar
Graves, M. L., Zhou, L., MacDonald, G., Mueller, C. R. & Roskelley, C. D. Regulation of the BRCA1 promoter in ovarian surface epithelial cells and ovarian carcinoma cells. FEBS Lett.581, 1825–1833 (2007). ArticleCASPubMed Google Scholar
Bhoumik, A., Jones, N. & Ronai, Z. Transcriptional switch by activating transcription factor 2-derived peptide sensitizes melanoma cells to apoptosis and inhibits their tumorigenicity. Proc. Natl Acad. Sci. USA101, 4222–4227 (2004). ArticleCASPubMedPubMed Central Google Scholar
Vale-Cruz, D. S., Ma, Q., Syme, J. & LuValle, P. A. Activating transcription factor-2 affects skeletal growth by modulating pRb gene expression. Mech. Dev.125, 843–856 (2008). ArticleCASPubMed Google Scholar
Nakamura, T. et al. Down-regulation of the cyclin A promoter in differentiating human embryonal carcinoma cells is mediated by depletion of ATF-1 and ATF-2 in the complex at the ATF/CRE site. Exp. Cell Res.216, 422–430 (1995). ArticleCASPubMed Google Scholar
Beier, F., Taylor, A. C. & LuValle, P. Activating transcription factor 2 is necessary for maximal activity and serum induction of the cyclin A promoter in chondrocytes. J. Biol. Chem.275, 12948–12953 (2000). ArticleCASPubMed Google Scholar
Bhoumik, A. et al. Suppressor role of activating transcription factor 2 (ATF2) in skin cancer. Proc. Natl Acad. Sci. USA105, 1674–1679 (2008). ArticleCASPubMedPubMed Central Google Scholar
Maekawa, T. et al. ATF-2 controls transcription of Maspin and GADD45α genes independently from p53 to suppress mammary tumors. Oncogene27, 1045–1054 (2008). ArticleCASPubMed Google Scholar
Chen, S. Y. et al. Overexpression of phosphorylated-ATF2 and STAT3 in cutaneous squamous cell carcinoma, Bowen's disease and basal cell carcinoma. J. Dermatol. Sci.51, 210–215 (2008). ArticleCASPubMed Google Scholar
Knippen, S. et al. Expression and prognostic value of activating transcription factor 2 (ATF2) and its phosphorylated form in mammary carcinomas. Anticancer Res.29, 183–189 (2009). CASPubMed Google Scholar
Lewis, J. S. et al. Activation of cyclin D1 by estradiol and spermine in MCF-7 breast cancer cells: a mechanism involving the p38 MAP kinase and phosphorylation of ATF-2. Oncol. Res.15, 113–128 (2005). ArticleCASPubMed Google Scholar
Berger, A. J. et al. Subcellular localization of activating transcription factor 2 in melanoma specimens predicts patient survival. Cancer Res.63, 8103–8107 (2003). CASPubMed Google Scholar
Deng, X. et al. Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: implications for disease progression. Cancer Res.68, 9663–9670 (2008). ArticleCASPubMedPubMed Central Google Scholar
Daury, L. et al. Opposing functions of ATF2 and Fos-like transcription factors in c-Jun-mediated myogenin expression and terminal differentiation of avian myoblasts. Oncogene20, 7998–8008 (2001). ArticleCASPubMed Google Scholar
Chu, M., Guo, J. & Chen, C. Y. Long-term exposure to nicotine, via ras pathway, induces cyclin D1 to stimulate G1 cell cycle transition. J. Biol. Chem.280, 6369–6379 (2005). ArticleCASPubMed Google Scholar
Manna, S. K. et al. Long term environmental tobacco smoke activates nuclear transcription factor-κB, activator protein-1 and stress responsive kinases in mouse brain. Biochem. Pharmacol.71, 1602–1609 (2006). ArticleCASPubMedPubMed Central Google Scholar
Heintz, N. H., Janssen, Y. M. & Mossman, B. T. Persistent induction of c-fos and c-jun expression by asbestos. Proc. Natl Acad. Sci. USA90, 3299–3303 (1993). ArticleCASPubMedPubMed Central Google Scholar
Janssen, Y. M., Heintz, N. H., Marsh, J. P., Borm, P. J. & Mossman, B. T. Induction of c-fos and c-jun proto-oncogenes in target cells of the lung and pleura by carcinogenic fibers. Am. J. Respir. Cell. Mol. Biol.11, 522–530 (1994). ArticleCASPubMed Google Scholar
Fried, U., Kotarsky, K. & Alling, C. Chronic ethanol exposure enhances activating protein-1 transcriptional activity in human neuroblastoma cells. Alcohol24, 189–195 (2001). ArticleCASPubMed Google Scholar
Matthews, C. P. et al. Dominant-negative activator protein 1 (TAM67) targets cyclooxygenase-2 and osteopontin under conditions in which it specifically inhibits tumorigenesis. Cancer Res.67, 2430–2438 (2007). ArticleCASPubMed Google Scholar
Young, M. R. et al. Transgenic mice demonstrate AP1 (activator protein-1) transactivation is required for tumor promotion. Proc. Natl Acad. Sci. USA96, 9827–9832 (1999). ArticleCASPubMedPubMed Central Google Scholar
Astruc, M. E., Chabret, C., Bali, P., Gagne, D. & Pons, M. Prolonged treatment of breast cancer cells with antiestrogens increases the activating protein-1-mediated response: involvement of the estrogen receptor. Endocrinology136, 824–832 (1995). ArticleCASPubMed Google Scholar
Brozovic, A. et al. Long-term activation of SAPK/JNK, p38 kinase and fas-L expression by cisplatin is attenuated in human carcinoma cells that acquired drug resistance. Int. J. Cancer112, 974–985 (2004). ArticleCASPubMed Google Scholar
Ozanne, B. W., Spence, H. J., McGarry, L. C. & Hennigan, R. F. Transcription factors control invasion: AP1 the first among equals. Oncogene26, 1–10 (2007). ArticleCASPubMed Google Scholar
Maeno, K. et al. Altered regulation of c-jun and its involvement in anchorage-independent growth of human lung cancers. Oncogene25, 271–277 (2005). ArticleCAS Google Scholar
Shiratsuchi, T., Ishibashi, H. & Shirasuna, K. Inhibition of epidermal growth factor-induced invasion by dexamethasone and AP1 decoy in human squamous cell carcinoma cell lines. J. Cell Physiol.193, 340–348 (2002). ArticleCASPubMed Google Scholar
Katiyar, S., Jiao, X., Wagner, E., Lisanti, M. P. & Pestell, R. G. Somatic excision demonstrates that c-Jun induces cellular migration and invasion through induction of stem cell factor. Mol. Cell. Biol.27, 1356–1369 (2007). ArticleCASPubMed Google Scholar
Hommura, F. et al. HMG-I/Y is a c-Jun/activator protein-1 target gene and is necessary for c-Jun-induced anchorage-independent growth in Rat1a cells. Mol. Cancer Res.2, 305–314 (2004). CASPubMed Google Scholar
Kinoshita, I. et al. Identification of cJun-responsive genes in Rat-1a cells using multiple techniques: Increased expression of stathmin is necessary for cJun-mediated anchorage-independent growth. Oncogene22, 2710–2722 (2003). ArticleCASPubMed Google Scholar
Jooss, K. U. & Muller, R. Deregulation of genes encoding microfilament-associated proteins during Fos-induced morphological transformation. Oncogene10, 603–608 (1995). CASPubMed Google Scholar
Westermarck, J. et al. Activation of fibroblast collagenase-1 expression by tumor cells of squamous cell carcinomas is mediated by p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase-2. Cancer Res.60, 7156–7162 (2000). CASPubMed Google Scholar
Reichmann, E. et al. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell71, 1103–1116 (1992). ArticleCASPubMed Google Scholar
Belguise, K., Kersual, N., Galtier, F. & Chalbos, D. FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells. Oncogene24, 1434–1444 (2005). ArticleCASPubMed Google Scholar
Ramos-Nino, M. E., Scapoli, L., Martinelli, M., Land, S. & Mossman, B. T. Microarray analysis and RNA silencing link fra-1 to cd44 and c-met expression in mesothelioma. Cancer Res.63, 3539–3545 (2003). CASPubMed Google Scholar
Chen, S. Y. et al. Concordant overexpression of phosphorylated ATF2 and STAT3 in extramammary Paget's disease. J. Cutan. Pathol.36, 402–408 (2009). ArticlePubMed Google Scholar
Jean, D. & Bar-Eli, M. Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factor family. Mol. Cell Biochem.212, 19–28 (2000). ArticleCASPubMed Google Scholar
Vleugel, M. M., Greijer, A. E., Bos, R., van der Wall, E. & van Diest, P. J. c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum. Pathol.37, 668–674 (2006). ArticleCASPubMed Google Scholar
Zhang, G. et al. Effect of deoxyribzymes targeting c-Jun on solid tumor growth and angiogenesis in rodents. J. Natl Cancer Inst.96, 683–696 (2004). ArticleCASPubMed Google Scholar
Zhang, G. et al. Squamous cell carcinoma growth in mice and in culture is regulated by c-Jun and its control of matrix metalloproteinase-2 and -9 expression. Oncogene25, 7260–7266 (2006). ArticleCASPubMed Google Scholar
Bowden, G. T., Schneider, B., Domann, R. & Kulesz-Martin, M. Oncogene activation and tumor suppressor gene inactivation during multistage mouse skin carcinogenesis. Cancer Res.54, 1882–1885 (1994). Google Scholar
Toft, D. J., Rosenberg, S. B., Bergers, G., Volpert, O. & Linzer, D. I. H. Reactivation of proliferin gene expression is associated with increased angiogenesis in a cell culture model of fibrosarcoma tumor progression. Proc. Natl Acad. Sci. USA98, 13055–13059 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ming, J., Zhang, Q., Qiu, X. & Wang, E. Interleukin 7/interleukin 7 receptor induce c-Fos/c-Jun-dependent vascular endothelial growth factor-D up-regulation: a mechanism of lymphangiogenesis in lung cancer. Eur. J. Cancer45, 866–873 (2009). ArticleCASPubMed Google Scholar
Ham, J. et al. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron14, 927–939 (1995). ArticleCASPubMed Google Scholar
Wang, N. et al. c-Jun triggers apoptosis in human vascular endothelial cells. Circ. Res.85, 387–393 (1999). ArticleCASPubMed Google Scholar
Podar, K. et al. Up-regulation of c-Jun inhibits proliferation and induces apoptosis via caspase-triggered c-Abl cleavage in human multiple myeloma. Cancer Res.67, 1680–1688 (2007). ArticleCASPubMed Google Scholar
Hettinger, K. et al. c-Jun promotes cellular survival by suppression of PTEN. Cell Death Differ.14, 218–229 (2006). ArticlePubMedCAS Google Scholar
Eferl, R. et al. Liver Tumor development: c-Jun antagonizes the proapoptotic activity of p53. Cell112, 181–192 (2003). ArticleCASPubMed Google Scholar
Stepniak, E. et al. c-Jun/AP1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes Dev.20, 2306–2314 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kalra, N. & Kumar, V. c-Fos is a mediator of the c-myc-induced apoptotic signaling in serum-deprived hepatoma cells via the p38 mitogen-activated protein kinase pathway. J. Biol. Chem.279, 25313–25319 (2004). ArticleCASPubMed Google Scholar
Siegmund, D. et al. Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway. J. Biol. Chem.276, 32585–32590 (2001). ArticleCASPubMed Google Scholar
Kustikova, O. et al. Fra-1 induces morphological transformation and increases in vitro invasiveness and motility of epithelioid adenocarcinoma cells. Mol. Cell. Biol.18, 7095–7105 (1998). ArticleCASPubMedPubMed Central Google Scholar
Shirsat, N. V. & Shaikh, S. A. Overexpression of the immediate early gene fra-1 inhibits proliferation, induces apoptosis, and reduces tumourigenicity of c6 glioma cells. Exp. Cell Res.291, 91–100 (2003). ArticleCASPubMed Google Scholar
Jochum, W., Passegue, E. & Wagner, E. F. AP1 in mouse development and tumorigenesis. Oncogene20, 2401–2412 (2001). ArticleCASPubMed Google Scholar
Leppa, S., Eriksson, M., Saffrich, R., Ansorge, W. & Bohmann, D. Complex functions of AP1 transcription factors in differentiation and survival of PC12 cells. Mol. Cell. Biol.21, 4369–4378 (2001). ArticleCASPubMedPubMed Central Google Scholar
Behrens, A., Sibilia, M. & Wagner, E. F. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nature Genet.21, 326–329 (1999). ArticleCASPubMed Google Scholar
Yuan, Z. et al. Opposing roles for ATF2 and c-Fos in c-Jun-mediated neuronal apoptosis. Mol. Cell. Biol. (2009).
Li, W., Zhang, X. & Olumi, A. F. MG-132 sensitizes TRAIL-resistant prostate cancer cells by activating c-Fos/c-Jun heterodimers and repressing c-FLIPL . Cancer Res.67, 2247–2255 (2007). ArticleCASPubMed Google Scholar
Adunyah, S. E., Chander, R., Barner, V. K., Cooper, R. S. & Copper, R. S. Regulation of c-jun mRNA expression by hydroxyurea in human K562 cells during erythroid differentiation. Biochim. Biophys. Acta1263, 123–132 (1995). ArticlePubMed Google Scholar
Santaguida, M. et al. JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell15, 341–352 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hilberg, F., Aguzzi, A., Howells, N. & Wagner, E. F. c-jun is essential for normal mouse development and hepatogenesis. Nature365, 179–181 (1993). ArticleCASPubMed Google Scholar
Wo, Y., Zhu, D., Yu, Y. & Lou, Y. Involvement of NF-κB and AP1 activation in icariin promoted cardiac differentiation of mouse embryonic stem cells. Eur. J. Pharmacol.586, 59–66 (2008). ArticleCASPubMed Google Scholar
Okuda, A. et al. UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells. EMBO J.17, 2019–2032 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rapp, U. R., Troppmair, J., Beck, T. & Birrer, M. J. Transformation by Raf and other oncogenes renders cells differentially sensitive to growth inhibition by a dominant negative c-jun mutant. Oncogene9, 3493–3498 (1994). CASPubMed Google Scholar
Mathas, S. et al. Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-κB. EMBO J.21, 4104–4113 (2002). ArticleCASPubMedPubMed Central Google Scholar
Drakos, E. et al. c-Jun expression and activation are restricted to CD30+ lymphoproliferative disorders. Am. J. Surg. Pathol.31, 447–453 (2007). ArticlePubMed Google Scholar
Ouyang, X. et al. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res.68, 2132–2144 (2008). ArticleCASPubMed Google Scholar
Mahner, S. et al. C-Fos expression is a molecular predictor of progression and survival in epithelial ovarian carcinoma. Br. J. Cancer99, 1269–1275 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jin, S. P. et al. Prognostic significance of loss of c-fos protein in gastric carcinoma. Pathol. Oncol. Res.13, 284–289 (2007). ArticleCASPubMed Google Scholar
Young, M. R. & Colburn, N. H. Fra-1 a target for cancer prevention or intervention. Gene379, 1–11 (2006). ArticleCASPubMed Google Scholar
Ramirez-Carrozzi, V. & Kerppola, T. Asymmetric recognition of nonconsensus AP1 sites by Fos-Jun and Jun-Jun influences transcriptional cooperativity with NFAT1. Mol. Cell. Biol.23, 1737–1749 (2003). ArticleCASPubMedPubMed Central Google Scholar
Huguier, S., Baguet, J., Perez, S., van Dam, H. & Castellazzi, M. Transcription factor ATF2 cooperates with v-Jun to promote growth factor-independent proliferation in vitro and tumor formation in vivo. Mol. Cell. Biol.18, 7020–7029 (1998). ArticleCASPubMedPubMed Central Google Scholar
van Dam, H. et al. Autocrine growth and anchorage independence: two complementing Jun-controlled genetic programs of cellular transformation. Genes Dev.12, 1227–1239 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sunters, A., Thomas, D. P., Yeudall, W. A. & Grigoriadis, A. E. Accelerated cell cycle progression in osteoblasts overexpressing the c-fos proto-oncogene: induction of cyclin A and enhanced CDK2 activity. J. Biol. Chem.279, 9882–9891 (2004). ArticlePubMed Google Scholar
Chalmers, C. J., Gilley, R., March, H. N., Balmanno, K. & Cook, S. J. The duration of ERK1/2 activity determines the activation of c-Fos and Fra-1 and the composition and quantitative transcriptional output of AP1. Cell Signal19, 695–704 (2007). ArticleCASPubMed Google Scholar
De Cesare, D. et al. Heterodimerization of c-Jun with ATF-2 and c-Fos is required for positive and negative regulation of the human urokinase enhancer. Oncogene11, 365–376 (1995). CASPubMed Google Scholar
Lemaigre, F. P., Ace, C. I. & Green, M. R. The cAMP response element binding protein, CREB, is a potent inhibitor of diverse transcriptional activators. Nucleic Acids Res.21, 2907–2911 (1993). ArticleCASPubMedPubMed Central Google Scholar
Rutberg, S. E. et al. CRE DNA binding proteins bind to the AP1 target sequence and suppress AP1 transcriptional activity in mouse keratinocytes. Oncogene18, 1569–1579 (1999). ArticleCASPubMed Google Scholar
Chiu, R., Angel, P. & Karin, M. JunB differs in its biological properties from, and is a negative regulator of c-Jun. Cell59, 979–986 (1989). ArticleCASPubMed Google Scholar
Mechta, F., Lallemand, D., Pfarr, C. M. & Yaniv, M. Transformation by ras modifies AP1 composition and activity. Oncogene14, 837–847 (1997). ArticleCASPubMed Google Scholar
Flint, K. J. & Jones, N. C. Differential regulation of three members of the ATF/CREB family of DNA-binding proteins. Oncogene6, 2019–2026 (1991). CASPubMed Google Scholar
Hagmeyer, B. M., Angel, P. & van Dam, H. Modulation of AP1/ATF transcription factor activity by the adenovirus-E1A oncogene products. Bioessays17, 621–629 (1995). ArticleCASPubMed Google Scholar
Pospelova, T. V. et al. E1A+ cHa-ras transformed rat embryo fibroblast cells are characterized by high and constitutive DNA binding activities of AP1 dimers with significantly altered composition. Gene Expr8, 19–32 (1999). CASPubMed Google Scholar
Abdel-Hafiz, H. A., Chen, C. Y., Marcell, T., Kroll, D. J. & Hoeffler, J. P. Structural determinants outside of the leucine zipper influence the interactions of CREB and ATF-2: interaction of CREB with ATF-2 blocks E1a-ATF-2 complex formation. Oncogene8, 1161–1174 (1993). CASPubMed Google Scholar
Chinenov, Y. & Kerppola, T. K. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene20, 2438–2452 (2001). ArticleCASPubMed Google Scholar
Kara, C. J., Liou, H. C., Ivashkiv, L. B. & Glimcher, L. H. A cDNA for a human cyclic AMP response element-binding protein which is distinct from CREB and expressed preferentially in brain. Mol. Cell. Biol.10, 1347–1357 (1990). ArticleCASPubMedPubMed Central Google Scholar
Georgopoulos, K., Morgan, B. A. & Moore, D. D. Functionally distinct isoforms of the CRE-BP DNA-binding protein mediate activity of a T-cell-specific enhancer. Mol. Cell. Biol.12, 747–757 (1992). ArticleCASPubMedPubMed Central Google Scholar
Bailey, J. & Europe-Finner, G. N. Identification of human myometrial target genes of the c-Jun NH2-terminal kinase (JNK) pathway: the role of activating transcription factor 2 (ATF2) and a novel spliced isoform ATF2-small. J. Mol. Endocrinol.34, 19–35 (2005). ArticleCASPubMed Google Scholar
Ransone, L. J. & Verma, I. M. Nuclear proto-oncogenes fos and jun. Annu. Rev. Cell Biol.6, 539–557 (1990). ArticleCASPubMed Google Scholar
Wei, W., Jin, J., Schlisio, S., Harper, J. W. & Kaelin, J. W. G. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell8, 25–33 (2005). ArticleCASPubMed Google Scholar
Huang, C. C. et al. Calcineurin-mediated dephosphorylation of c-Jun Ser-243 is required for c-Jun protein stability and cell transformation. Oncogene27, 2422–2429 (2007). ArticlePubMedCAS Google Scholar
Wang, Y.-N., Chen, Y.-J. & Chang, W.-C. Activation of extracellular signal-regulated kinase signaling by epidermal growth factor mediates c-Jun activation and p300 recruitment in keratin 16 gene expression. Mol. Pharmacol.69, 85–98 (2006). ArticleCASPubMed Google Scholar
Wertz, I. E. et al. Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science303, 1371–1374 (2004). ArticleCASPubMed Google Scholar
Szabo, E., Riffe, M. E., Steinberg, S. M., Birrer, M. J. & Linnoila, R. I. Altered cJun expression: an early event in human lung carcinogenesis. Cancer Res.56, 305–315 (1996). CASPubMed Google Scholar
Rangatia, J. et al. Elevated c-Jun expression in acute myeloid leukemias inhibits C/EBPα DNA binding via leucine zipper domain interaction. Oncogene22, 4760–4764 (2003). ArticleCASPubMed Google Scholar
Zhang, W., Hart, J., McLeod, H. L. & Wang, H. L. Differential expression of the AP1 transcription factor family members in human colorectal epithelial and neuroendocrine neoplasms. Am. J. Clin. Path.124, 11–19 (2005). ArticleCASPubMed Google Scholar
Tessari, G. et al. The expression of proto-oncogene c-jun in human pancreatic cancer. Anticancer Res.19, 863–867 (1999). CASPubMed Google Scholar
Acay, R. R., Santos, E.d. & Machado de Sousa, S. O. Correlation between c-Jun and human papillomavirus in oral premalignant and malignant lesions. Oral Oncology44, 698–702 (2008). ArticleCASPubMed Google Scholar
Assimakopoulou, M. & Varakis, J. AP1 and heat shock protein 27 expression in human astrocytomas. J. Cancer Res. Clin. Oncol.127, 727–732 (2001). CASPubMed Google Scholar
Papachristou, D. J., Batistatou, A., Sykiotis, G. P., Varakis, I. & Papavassiliou, A. G. Activation of the JNK-AP1 signal transduction pathway is associated with pathogenesis and progression of human osteosarcomas. Bone32, 364–371 (2003). ArticleCASPubMed Google Scholar
Assimakopoulou, M., Kondyli, M., Gatzounis, G., Maraziotis, T. & Varakis, J. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas. BMC Cancer7, 202 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Langer, S. et al. Jun and Fos family protein expression in human breast cancer: correlation of protein expression and clinicopathological parameters. Eur. J. Gynaecol Oncol.27, 345–352 (2006). CASPubMed Google Scholar
Mao, X. & Orchard, G. Abnormal AP1 protein expression in primary cutaneous B-cell lymphomas. Br. J. Dermatol.159, 145–151 (2008). ArticleCASPubMed Google Scholar
Wang, H., Birkenbach, M. & Hart, J. Expression of Jun family members in human colorectal adenocarcinoma. Carcinogenesis21, 1313–1317 (2000). ArticleCASPubMed Google Scholar
Linardopoulos, S. et al. Human lung and bladder carcinoma tumors as compared to their adjacent normal tissue have elevated AP1 activity associated with the retinoblastoma gene promoter. Anticancer Res.13, 257–262 (1993). CASPubMed Google Scholar
Bamberger, A. M., Milde-Langosch, K., Rossing, E., Goemann, C. & Loning, T. Expression pattern of the AP1 family in endometrial cancer: correlations with cell cycle regulators. J. Cancer Res. Clin. Oncol.127, 545–550 (2001). ArticleCASPubMed Google Scholar
Prusty, B. K. & Das, B. C. Constitutive activation of transcription factor AP1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP1 activity in HeLa cells by curcumin. Int. J. Cancer113, 951–960 (2005). ArticleCASPubMed Google Scholar
Cirillo, G. et al. Role of distinct mitogen-activated protein kinase pathways and cooperation between Ets-2, ATF-2, and Jun family members in human urokinase-type plasminogen activator gene induction by interleukin-1 and tetradecanoyl phorbol acetate. Mol. Cell. Biol.19, 6240–6252 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lin, D. W. et al. Transforming growth factor beta up-regulates cysteine-rich protein 2 in vascular smooth muscle cells via activating transcription factor 2. J. Biol. Chem.283, 15003–15014 (2008). ArticleCASPubMedPubMed Central Google Scholar
Read, M. A. et al. Tumor necrosis factorα-induced E-selectin expression is activated by the nuclear factor-kappaB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways. J. Biol. Chem.272, 2753–2761 (1997). ArticleCASPubMed Google Scholar
Herr, I. et al. Autoamplification of apoptosis following ligation of CD95-L, TRAIL and TNF-α. Oncogene19, 4255–4262 (2000). ArticleCASPubMed Google Scholar
Kool, J. et al. Induction of ATF3 by ionizing radiation is mediated via a signaling pathway that includes ATM, Nibrin1, stress-induced MAPkinases and ATF-2. Oncogene22, 4235–4242 (2003). ArticleCASPubMed Google Scholar
Bhat, N. R., Feinstein, D. L., Shen, Q. & Bhat, A. N. p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor κB, cAMP response element-binding protein, CCAAT/enhancer-binding protein-β, and activating transcription factor-2. J. Biol. Chem.277, 29584–29592 (2002). ArticleCASPubMed Google Scholar
Penix, L. A. et al. The proximal regulatory element of the interferon-γ promoter mediates selective expression in T cells. J. Biol. Chem.271, 31964–31972 (1996). ArticleCASPubMed Google Scholar
Chen, K. D., Hung., J. J., Huang, H. L., Chang, M. D. & Lai, Y. K. Rapid induction of the Grp78 gene by cooperative actions of okadaic acid and heat-shock in 9L rat brain tumor cells — involvement of a cAMP responsive element-like promoter sequence and a protein kinase A signaling pathway. Eur. J. Biochem.248, 120–129 (1997). ArticleCASPubMed Google Scholar
Suzuki, T., Yamakuni, T., Hagiwara, M. & Ichinose, H. Identification of ATF-2 as a transcriptional regulator for the tyrosine hydroxylase gene. J. Biol. Chem.277, 40768–40774 (2002). ArticleCASPubMed Google Scholar
Akimoto, T. et al. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J. Biol. Chem.280, 19587–19593 (2005). ArticleCASPubMed Google Scholar
Kawasaki, H. et al. p300 and ATF-2 are components of the DRF complex, which regulates retinoic acid- and E1A-mediated transcription of the c-jun gene in F9 cells. Genes Dev.12, 233–45 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J. Y. et al. The JNK/AP1/ATF2 pathway is involved in H2O2-induced acetylcholinesterase expression during apoptosis. Cell. Mol. Life Sci.65, 1435–1445 (2008). ArticleCASPubMed Google Scholar