The neural mechanisms of gustation: a distributed processing code (original) (raw)
References
Marks, L. E. & Wheeler, M. E. Attention and the detectability of weak taste stimuli. Chem. Senses23, 19–29 (1998). ArticleCASPubMed Google Scholar
Breslin, P. A. & Huang, L. Human taste: peripheral anatomy, taste transduction, and coding. Adv. Otorhinolaryngol.63, 152–190 (2006). PubMed Google Scholar
Desimone, J. A. & Lyall, V. Salty and sour taste: sensing of sodium and protons by the tongue. Am. J. Physiol. Gastrointest. Liver Physiol. 29 June 2006 (doi:10.1152/ajpgi.00235).
Margolskee, R. F. Sensory systems: taste perception. Sci. STKE290, tr20 (2005). Google Scholar
Fontanini, A. & Katz, D. B. State-dependent modulation of time-varying gustatory responses. J. Neurophysiol. 23 Aug 2006 (doi:10.1152/jn.00804).
Gutierrez, R., Carmena, J. M., Nicolelis, M. A. & Simon, S. A. Orbitofrontal ensemble activity monitors licking and distinguishes among natural rewards. J. Neurophysiol.95, 119–133 (2006). ArticlePubMed Google Scholar
Stapleton, J. A., Lavine, M., Wolpert, R., Nicolelis, M. A. L. & Simon, S. A. Rapid taste responses in the gustatory cortex during licking. J. Neurosci.26, 4126–4138 (2006). ArticleCASPubMedPubMed Central Google Scholar
Finger, T. E. & Simon, S. A. in The Neurobiology of Taste and Smell (eds Finger, T. E., Silver, W. L. & Restrepo, D.) 287–314 (Wiley-Liss, New York, 2002). Google Scholar
Scott, T. R. & Verhagen, J. V. Taste as a factor in the management of nutrition. Nutrition16, 874–885 (2000). ArticleCASPubMed Google Scholar
Spector, A. C. & Travers, S. P. The representation of taste quality in the mammalian nervous system. Behav. Cogn. Neurosci. Rev.4, 143–191 (2005). ArticlePubMed Google Scholar
Holland, V. F., Zampighi, G. A. & Simon, S. A. Morphology of fungiform papillae in canine lingual epithelium: location of intercellular junctions in the epithelium. J. Comp. Neurol.279, 13–27 (1989). ArticleCASPubMed Google Scholar
Yoshii, K. Gap junctions among taste bud cells in mouse fungiform papillae. Chem. Senses30, i35–i36 (2005). ArticleCASPubMed Google Scholar
Herness, S., Zhao, F. L., Kaya, N., Lu, S. G. & Cao, Y. Communication routes within the taste bud by neurotransmitters and neuropeptides. Chem. Senses30, i37–i38 (2005). ArticleCASPubMed Google Scholar
Zhao, F. L. et al. Expression, physiological action, and coexpression patterns of neuropeptide Y in rat taste-bud cells. Proc. Natl Acad. Sci. USA102, 11100–11105 (2005). ArticleCASPubMedPubMed Central Google Scholar
Danilova, V., Danilov, Y., Roberts, T. & Hellekant, G. Sense of taste of the common marmoset: recordings from the chorda tympani and glossopharyngeal nerves. J. Neurophys.88, 579–594 (2002). Article Google Scholar
Hanamori, T., Miller, I. J. Jr & Smith, D. V. Gustatory responsiveness of fibers in the hamster glossopharyngeal nerve. J. Neurophysiol.60, 478–498 (1988). ArticleCASPubMed Google Scholar
Spector, A. C. Linking gustatory neurobiology to behavior in vertebrates. Neurosci. Biobehav. Rev.391, 391–416 (2000). Article Google Scholar
Travers, S. P. in Mechanisms of Taste Transduction (eds Simon, S. A. & Roper, S. D.) 339–395 (CRC, Boca Raton, 1993). Google Scholar
Finger, T. E. et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science310, 1495–1499 (2005). ArticleCASPubMed Google Scholar
Bigiani, A. R., Delay, R. J., Chaudhari, N., Kinnamon, S. C. & Roper, S. D. Responses to glutamate in rat taste cells. J. Neurophysiol.77, 3048–3059 (1997). ArticleCASPubMed Google Scholar
Ogura, T. Acetylcholine increases intracellular Ca2+ in taste cells via activation of muscarinic receptors. J. Neurophysiol.87, 2643–2649 (2002). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell112, 293–301 (2003). ArticleCASPubMed Google Scholar
Chrandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell100, 703–711 (2000). Article Google Scholar
Liu, D. & Liman, E. R. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl Acad. Sci. USA100, 15160–15165 (2003). ArticleCASPubMedPubMed Central Google Scholar
Max, M. et al. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nature Genet.28, 58–63 (2001). CASPubMed Google Scholar
Montmayeur, J. P., Liberlis, S. D., Matsunami, H. & Buck, L. A candidate taste receptor gene near a sweet taste locus. Nature Neurosci.4, 492–498 (2001). ArticleCASPubMed Google Scholar
Mueller, K. L. et al. The receptors and coding logic for bitter taste. Nature434, 225–229 (2005). ArticleCASPubMed Google Scholar
Perez, C. A., Margolskee, R. F., Kinnamon, S. C. & Ogura, T. Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Cell Calcium33, 541–549 (2003). ArticleCASPubMed Google Scholar
Zhao, G. Q. et al. The receptors for mammalian sweet and umami taste. Cell115, 255–266 (2003). ArticleCASPubMed Google Scholar
Kellenberger, S. & Schild, L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev.82, 735–767 (2002). ArticleCASPubMed Google Scholar
Nelson, G., Hoon, M. A., Chandrashekar, J., Ryba, N. J. P. & Zuker, C. S. Mammalian sweet taste receptors. Cell106, 381–390 (2001). ArticleCASPubMed Google Scholar
Galindo-Cuspinera, V., Winnig, M., Bufe, B., Meyerhof, W. & Breslin, P. A. A TAS1R receptor-based explanation of sweet 'water-taste'. Nature441, 354–357 (2006). ArticleCASPubMed Google Scholar
Maruyama, Y., Pereira, E., Margolskee, R. F., Chaudhari, N. & Roper, S. D. Umami responses in mouse taste cells indicate more than one receptor. J. Neurosci.26, 2227–2234 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ming, D., Ninomiya, T. & Margolskee, R. F. Blocking taste receptor activation of gustducin inhibits gustatory responses to bitter compounds. Proc. Natl Acad. Sci. USA96, 9903–9908 (2000). Article Google Scholar
Parry, C. M., Erkner, A. & le Coutre, J. Divergence of T2R chemosensory receptor families in humans, bonobos, and chimpanzees. Proc. Natl Acad. Sci. USA101, 14830–14834 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nelson, T., Munger, S. & Boughter, J. Haplotypes at the Tas2r locus on distal chromosome 6 vary with quinine taste sensitivity in inbred mice. BMC Genet.6, 32 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bufe, B. et al. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr. Biol.15, 322–327 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kim, U. K. & Drayna, D. Genetics of individual differences in bitter taste perception: lessons from the PTC gene. Clin. Genet.67, 275–280 (2005). ArticleCASPubMed Google Scholar
Kretz, O., Barbry, P., Bock, R. & Lindemann, B. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J. Histochem. Cytochem.47, 51–64 (1999). ArticleCASPubMed Google Scholar
Schiffman, S. S., Lockhead, E. & Maes, F. W. Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners. Proc. Natl Acad. Sci. USA80, 6136–6140 (1983). ArticleCASPubMedPubMed Central Google Scholar
DeSimone, J. A. & Ferrell, F. Analysis of amiloride inhibition of chorda tympani taste response of rat to NaCl. Am. J. Physiol. Cell Physiol.249, R52–R61 (1985). CAS Google Scholar
Elliott, E. J. & Simon, S. A. The anion in salt taste: a possible role of tight junctions. Brain Res.535, 9–17 (1990). ArticleCASPubMed Google Scholar
Ossebaard, C. A. & Smith, D. V. Effect of amiloride on the taste of NaCl, Na-gluconate and KCl in humans: implications for Na+ receptor mechanisms. Chem. Senses20, 37–46 (1995). ArticleCASPubMed Google Scholar
Schiffman, S. S. Taste quality and neural coding: implications from psychophysics and neurophysiology. Physiol. Behav.69, 147–159 (2000). ArticleCASPubMed Google Scholar
Stevens, D. A., Smith, R. F. & Lawless, H. T. Multidimensional scaling of ferrous sulfate and basic tastes. Physiol. Behav.87, 272–279 (2006). ArticleCASPubMed Google Scholar
Lyall, V. et al. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J. Physiol.558, 147–159 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lyall, V. et al. A novel vanilloid receptor-1 (VR-1) variant mammalian salt taste receptor. Chem. Senses30, i42–i43 (2005). ArticleCASPubMed Google Scholar
Ishimaru, Y. et al. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl Acad. Sci. USA103, 12569–12574 (2006). ArticleCASPubMedPubMed Central Google Scholar
LopezJimenez, N. D. et al. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J. Neurochem.98, 68–77 (2006). ArticleCASPubMed Google Scholar
Lyall, V. et al. Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction. Am. J. Physiol. Cell Physiol.281, C1005–C1013 (2001). ArticleCASPubMed Google Scholar
French, S. & Robinson, T. Fats and food intake. Curr. Opin. Clin. Nutr. Metab. Care6, 629–634 (2003). ArticleCASPubMed Google Scholar
Kadohisa, M., Verhagen, J. V. & Rolls, E. T. The primate amygdala: neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods. Neuroscience132, 33–48 (2005). ArticleCASPubMed Google Scholar
Rolls, E. T. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol. Behav.85, 45–56 (2005). ArticleCASPubMed Google Scholar
Laugerette, F. et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Invest.115, 3177–3184 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kawai, T. & Fushiki, T. Importance of lipolysis in oral cavity for orosensory detection of fat. Am. J. Physiol285, R447–R454 (2003). CAS Google Scholar
Gilbertson, T. A., Fontenot, D. T., Liu, L., Zhang, H. & Monroe, W. T. Fatty acid modulation of K+ channels in taste receptor cells: gustatory cues for dietary fat. Am. J. Physiol. Cell Physiol.272, C1203–C1210 (1997). ArticleCAS Google Scholar
Gilbertson, T. A., Liu, L., Kim, I., Burks, C. A. & Hansen, D. R. Fatty acid responses in taste cells from obesity-prone and -resistant rats. Physiol. Behav.86, 681–690 (2005). ArticleCASPubMed Google Scholar
Lindemann, B. Sodium taste. Curr. Opin. Neph. Hypertens.6, 425–429 (1997). ArticleCAS Google Scholar
Rajan, R., Clement, J. P. & Bhalla, U. S. Rats smell in stereo. Science311, 667–670 (2006). ArticleCAS Google Scholar
Lu, S. G., Kaya, N. & Herness, M. S. Cholecystokinin increases intracellular calcium levels in rat posterior taste receptor cells. Chem. Senses25, 685 (2000). Google Scholar
Zhao, F. L. & Herness, M. S. Physiological actions of cholecystokinin on rat taste receptor cells. Chem. Senses26, 1065 (2001). Google Scholar
Bartoshuck, L. M., Rennert, K., Rodin, J. & Stevens, J. C. Effects of temperature on the perceived sweetness of sucrose. Physiol. Behav.28, 905–910 (2001). Article Google Scholar
Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature438, 1022–1025 (2005). ArticleCASPubMed Google Scholar
Green, B. G. Sensory interactions between capsaicin and temperature. Chem. Senses11, 371–382 (1986). ArticleCAS Google Scholar
Liu, L. & Simon, S. A. Capsaicin, acid and heat evoked currents in rat trigeminal ganglion neurons: evidence for functional VR1 receptors. Physiol. Behav69, 363–378 (2000). ArticleCASPubMed Google Scholar
Patapoutaian, A. TRP channels and thermoreception. Chem. Senses30, i193–i194 (2005). ArticleCAS Google Scholar
Halata, H. & Munger, B. L. The sensory innervation of primate facial skin 11 Vermilion boarder and mucosa of lip. Brain Res. Rev.5, 81–107 (1983). Article Google Scholar
Munger, B. L. in Mechanisms of Taste Transduction (eds Simon, S. A. & Roper, S. D.) 83–102 (CRC, Boca Raton, 1993). Google Scholar
Liu, L. & Simon, S. A. Capsaicin-induced currents with distinct desensitization and Ca+ dependence in rat trigeminal ganglion cells. J. Neurophysiol.75, 1503–1514 (1996). ArticleCASPubMed Google Scholar
Wang, Y., Erickson, R. E. & Simon, S. A. Modulation of chorda tympani nerve activity by lingual nerve stimulation. J. Neurophysiol.73, 1468–1483 (1995). ArticleCASPubMed Google Scholar
Chuang, H. H., Neuhausser, W. M. & Julius, D. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron43, 859–869 (2004). ArticleCASPubMed Google Scholar
Xu, H., Delling, M., Jun, J. C. & Clapham, D. E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neurosci.9, 628–635 (2006). ArticleCASPubMed Google Scholar
Carstens, E., Kuenzler, N. & Handwerker, K. O. Activation of neurons in rat trigeminal subnucleus caudalis by different irritant chemicals applied to the oral or ocular mucosa. J. Neurophysiol.80, 465–492 (1998). ArticleCASPubMed Google Scholar
Simons, C. T., Dressier, J. M., Carstens, M. I., O'Mahoney, M. & Carstens, E. Neurobiological and psychophysical mechanisms underlying the oral sensation produced by carbonated water. J. Neurosci.15, 8134–8144 (1999). Article Google Scholar
Wang, Y., Erickson, R. P. & Simon, S. A. Selectivity of lingual nerve fibers to chemical stimuli. J. Gen. Physiol.101, 843–866 (1993). ArticleCASPubMed Google Scholar
Danilova, V. & Hellekant, G. Oral sensation of ethanol in a primate model III: responses in the lingual branch of the trigeminal nerve of Macaca mulatta. Alcohol26, 3–16 (2002). ArticleCASPubMed Google Scholar
Bennick, A. Interaction of plant polyphenols with salivary proteins. Crit. Rev. Oral Bio. Med.13, 184–196 (2002). Article Google Scholar
Breslin, P. A. S., Gilmore, M. M., Beauchamp, G. K. & Green, B. G. Physiophysical evidence that oral astringency is a tactile sensation. Chem. Senses18, 405–417 (1993). ArticleCAS Google Scholar
Kawamura, Y., Okamoto, J. & Funakoshi, M. A role of oral afferents in aversion to taste solutions. Physiol. Behav.3, 537–542 (1968). ArticleCAS Google Scholar
Erickson, R. P. Stimulus coding in topographic and non-topographic afferent modalities. Psychol. Rev.75, 447–465 (1968). ArticleCASPubMed Google Scholar
Pfaffman, C. The afferent code for sensory quality. Am. Psychol.14, 226–232 (1959). Article Google Scholar
Caicedo, A., Kim, K. N. & Roper, S. D. Individual mouse taste cells respond to multiple chemical stimuli. J. Physiol.544, 501–509 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gilbertson, T. A., Boughter, J. D., Zhang, H. & Smith, D. V. Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J. Neurosci.27, 4931–4941 (2001). Article Google Scholar
Boudreau, J. C. et al. Neurophysiology of geniculate ganglion (facial nerve) taste systems: species comparisons. Chem. Senses10, 89–127 (1985). Article Google Scholar
Frank, M. F. Taste responsive neurons of the glossopharnygeal nerve of the rat. J. Neurophysiol.65, 1452–1462 (1991). ArticleCASPubMed Google Scholar
Frank, M. F., Bieber, S. L. & Smith, D. V. The organization of taste sensibilities in hamster chorda tympani nerve fibers. J. Gen. Physiol.91, 861–896 (1988). ArticleCASPubMedPubMed Central Google Scholar
Danilova, V. & Hellekant, G. Sense of taste in a new world monkey, the common marmoset. II. Link between behavior and nerve activity. J. Neurophys.92, 1067–1076 (2004). Article Google Scholar
Hellekant, G., Ninomiya, T. & Danilova, V. Taste in chimpanzees. III: Labeled-line coding in sweet taste. Physiol. Behav.65, 191–200 (1998). ArticleCASPubMed Google Scholar
Grill, H. J. & Norgren, R. Chronically decerebrate rats demonstrate satiation but not bait shyness. Science201, 267–269 (1978). ArticleCASPubMed Google Scholar
Jones, L. M., Fontanini, A. & Katz, D. B. Gustatory processing: a dynamic systems approach. Curr. Opin. Neurobiol.16, 420–428 (2006). ArticleCASPubMed Google Scholar
Hamilton, R. B. & Norgren, R. Central projections of gustatory nerves in the rat. J. Comp. Neurol.222, 560–577 (1984). ArticleCASPubMed Google Scholar
Boucher, Y., Simons, C. T., Faurion, A., Azerad, J. & Carstens, E. Trigeminal modulation of gustatory neurons in the nucleus of the solitary tract. Brain Res.973, 265–274 (2003). ArticleCASPubMed Google Scholar
van Buskirk, R. L. & Erickson, R. P. Responses in the rostral medulla to electrical stimulation of an intranasal trigeminal nerve convergence of oral and nasal inputs. Neurosci. Lett.5, 312–326 (2003). Google Scholar
Travagli, R. A., Hermann, G. E., Browning, K. N. & Rogers, R. C. Brainstem circuits regulating gastric function. Annu. Rev. Physiol.68, 279–305 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zhang, X., Fogel, R. & Renehan, W. E. Relationships between the morphology and function of gastric- and intestine-sensitive neurons in the nucleus of the solitary tract. J. Comp. Neurol.363, 37–52 (1995). ArticleCASPubMed Google Scholar
Berthoud, H. R., Earle, T., Zheng, H., Patterson, L. M. & Phifer, C. Food-related gastrointestinal signals activate caudal brainstem neurons expressing both NMDA and AMPA receptors. Brain Res.915, 143–154 (2001). ArticleCASPubMed Google Scholar
Glenn, J. F. & Erickson, R. P. Gastric modulation of gustatory afferent activity. Physiol. Behav.16, 561–568 (1976). Article Google Scholar
Simons, C. T., Boucher, Y., Iodi-Carstens, M. & Carstens, E. Nicotine suppression of gustatory responses of neurons in the nucleus of the solitary tract. J. Neurophys.96, 1877–1886 (2006). ArticleCAS Google Scholar
Norgren, R. & Grill, H. J. in The Physiological Mechanisms of Motivation (ed. Pfaff, D. W.) 99–131 (Springer, New York, 1982). Book Google Scholar
Cunningham, E. T. Jr & Sawchenko, P. E. Dorsal medullary pathways subserving oromotor reflexes in the rat: implications for the central neural control of swallowing. J. Comp. Neurol.417, 448–466 (2000). ArticlePubMed Google Scholar
Travers, J. B., Dinardo, L. A. & Karimnamazi, H. Motor and Premotor Mechanisms of Licking. Neurosci. Biobehav. Rev.21, 631–647 (1997). ArticleCASPubMed Google Scholar
Travers, S. P. & Norgren, R. Organization of orosensory responses in the nucleus of the solitary tract of rat. J. Neurophysiol.73, 2144–2162 (1995). ArticleCASPubMed Google Scholar
Sugita, M. & Shiba, Y. Genetic tracing shows segregation of taste circuitries for bitter and sweet. Science309, 781–785 (2005). ArticleCASPubMed Google Scholar
Scott, T. R., Yaxley, S., Sienkiewicz, Z. J. & Rolls, E. T. Taste responses in the nucleus tractus solitarius of the behaving monkey. J. Neurophysiol.55, 182–200 (1986). ArticleCASPubMed Google Scholar
Lemon, C. H. & Smith, D. V. Neural representation of bitter taste in the nucleus of the solitary tract. J. Neurophysiol.94, 3719–3729 (2005). ArticleCASPubMed Google Scholar
Lemon, C. H. & Smith, D. V. Influence of response variability on the coding performance of central gustatory neurons. J. Neurosci.26, 7433–7443 (2006). ArticleCASPubMedPubMed Central Google Scholar
Di Lorenzo, P. M., Halloak, R. M. & Kennedy, D. P. Temporal coding of sensation: mimicking taste quality with electrical stimulation of the brain. Behav. Neurosci.117, 1423–1433 (2003). ArticlePubMed Google Scholar
van der Kooy, D., Koda, L. Y., McGinty, J. F., Gerfen, C. R. & Bloom, F. E. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J. Comp. Neurol.224, 1–24 (1984). ArticleCASPubMed Google Scholar
Whitehead, M. C., Bergula, A. & Holliday, K. Forebrain projections to the rostral nucleus of the solitary tract in the hamster. J. Comp. Neurol.422, 429–447 (2000). ArticleCASPubMed Google Scholar
Di Lorenzo, P. M. & Monroe, S. Corticofugal influence on taste responses in the nucleus of the solitary tract in the rat. J. Neurophysiol.74, 258–272 (1995). ArticleCASPubMed Google Scholar
Smith, D. V., Li, C. S. & Cho, Y. K. Forebrain modulation of brainstem gustatory processing. Chem. Senses30, i176–i177 (2005). ArticlePubMed Google Scholar
Tokita, K., Karadi, Z., Shimura, T. & Yamamoto, T. Centrifugal inputs modulate taste aversion learning associated parabrachial neuronal activities. J. Neurophysiol.92, 265–279 (2004). ArticlePubMed Google Scholar
Li, C. S., Cho, Y. K. & Smith, D. V. Modulation of parabrachial taste neurons by electrical and chemical stimulation of the lateral hypothalamus and amygdala. J. Neurophysiol.93, 1183–1196 (2005). ArticlePubMed Google Scholar
Lundy, R. F. Jr & Norgren, R. Activity in the hypothalamus, amygdala, and cortex generates bilateral and convergent modulation of pontine gustatory neurons. J. Neurophysiol.91, 1143–1157 (2004). ArticlePubMed Google Scholar
Di Lorenzo, P. M. Corticofugal influence on taste responses in the parabrachial pons of the rat. Brain Res.530, 73–84 (1990). ArticleCASPubMed Google Scholar
Katz, D. B., Nicolelis, M. A. & Simon, S. A. Gustatory processing is dynamic and distributed. Curr. Opin. Neurobiol.12, 448–454 (2002). ArticleCASPubMed Google Scholar
Kadohisa, M., Rolls, E. T. & Verhagen, J. V. Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex and amygdala. Chem. Senses30, 401–419 (2005). ArticlePubMed Google Scholar
Hanamori, T., Kunitake, T., Kato, K. & Kannan, H. Responses of neurons in the insular cortex to gustatory, visceral and nociceptive stimuli in rats. J. Neurophysiol.79, 2535–2545 (1998). ArticleCASPubMed Google Scholar
Hanamori, T., Kunitake, T., Kato, K. & Kannan, H. Neurons in the posterior insular cortex are responsive to gustatory stimulation of the pharyngolarnyx, baroreceptors and chemoreceptor stimulation and tail pinch in rats. Brain Res.785, 97–106 (1999). Article Google Scholar
Katz, D. B., Simon, S. A. & Nicolelis, M. A. Taste-specific neuronal ensembles in the gustatory cortex of awake rats. J. Neurosci.22, 1850–1857 (2002). ArticleCASPubMedPubMed Central Google Scholar
Halpern, B. P. & Tapper, D. N. Taste stimuli: quality coding time. Science171, 1256–1258 (1971). ArticleCASPubMed Google Scholar
Katz, D. B., Simon, S. A. & Nicolelis, M. A. Dynamic and multimodal responses of gustatory cortical neurons in awake rats. J. Neurosci.21, 4478–4489 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ogawa, H. & Wang, X. D. Neurons in the cortical taste area receive nociceptive inputs from the whole body as well as the oral cavity in the rat. Neurosci. Lett.322, 87–90 (2002). ArticleCASPubMed Google Scholar
Yamamoto, T., Yuyama, N. & Kawamura, Y. Cortical neurons responding to tactile, thermal and taste stimulations of the rat tongue. Brain Res.221, 411–415 (1981). Article Google Scholar
Dalton, P., Doolittle, N., Nagata, H. & Breslin, P. A. S. The merging of the senses: integration of subthreshold taste and smell. Nature Neurosci.3, 431–432 (2000). ArticleCASPubMed Google Scholar
Todrank, J. & Bartoshuk, L. M. A taste illusion: taste sensation localized by touch. Physiol. Behav.50, 1027–1031 (1991). ArticleCASPubMed Google Scholar
Ito, S. & Ogawa, H. Neural activity in fronto-opercular cortex of macaque monkeys during tasting and mastication. Jpn J. Physiol.44, 141–156 (1994). ArticleCASPubMed Google Scholar
Scott, T. R., Yaxley, S., Sienkiewicz, Z. J. & Rolls, E. T. Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J. Neurophysiol.56, 876–890 (1986). ArticleCASPubMed Google Scholar
Zald, D. H. & Pardo, J. V. Cortical activation induced by intraoral stimulation with water in humans. Chem. Senses25, 267–276 (2000). ArticleCASPubMed Google Scholar
Rolls, E. T., Critchley, H. D., Browning, A. S., Hernadi, A. & Lenard, L. Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. J. Neurosci.19, 1532–1540 (1999). ArticleCASPubMedPubMed Central Google Scholar
Verhagen, J. V., Rolls, E. T. & Kadohisa, M. Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. J. Neurophys.90, 1514–1525 (2003). Article Google Scholar
Franks, K. M. & Isaacson, J. S. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Neuron49, 357–363 (2006). ArticleCASPubMed Google Scholar
Sewards, T. V. & Sewards, M. A. Cortical association areas in the gustatory system. Neurosci. Biobehav. Rev.25, 395–407 (2001). ArticleCASPubMed Google Scholar
Small, D. M., Jones-Gotman, M., Zatorre, R. J., Petrides, M. & Evans, A. C. Flavor processing: more than the sum of its parts. Neuroreport8, 3913–3917 (1997). ArticleCASPubMed Google Scholar
de Araujo, I. E., Rolls, E. T., Kringelbach, M. L., McGlone, F. & Phillips, N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur. J. Neurosci.18, 2059–2068 (2003). ArticlePubMed Google Scholar
Small, D. M. et al. Experience-dependent neural integration of taste and smell in the human brain. J. Neurophysiol.92, 1892–1903 (2004). ArticlePubMed Google Scholar
Mickley, G. A. et al. Dynamic processing of taste aversion extinction in the brain. Brain Res.1016, 79–89 (2004). ArticleCASPubMed Google Scholar
Garcia, J., Kimeldorf, D. J. & Koelling, R. A. Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science122, 157–158 (1955). CASPubMed Google Scholar
Sclafani, A. Post-ingestive positive controls of ingestive behavior. Appetite36, 79–83 (2001). ArticleCASPubMed Google Scholar
Rolls, E. T., Murzi, E., Yaxley, S., Thorpe, S. J. & Simpson, S. J. Sensory-specific satiety: food-specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey. Brain Res.368, 79–86 (1986). ArticleCASPubMed Google Scholar
Rolls, E. T., Sienkiewicz, Z. J. & Yaxley, S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci.1, 53–60 (1989). ArticlePubMed Google Scholar
O'Doherty, J., Rolls, E. T., Francis, S., Bowtell, R. & McGlone, F. Representation of pleasant and aversive taste in the human brain. J. Neurophys.85, 1315–1321 (2001). ArticleCAS Google Scholar
Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C. & Jones-Gotman, M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain124 1720–1733 (2001). ArticleCASPubMed Google Scholar
Gottfried, J. A., O'Doherty, J. & Dolan, R. J. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science301, 1104–1107 (2004). ArticleCAS Google Scholar
O'Doherty, J. et al. Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport11, 399–403 (2000). ArticleCASPubMed Google Scholar
de Araujo, I. E., Kringelbach, M. L., Rolls, E. T. & McGlone, F. Human cortical responses to water in the mouth, and the effects of thirst. J. Neurophysiol.90, 1865–1876 (2003). ArticlePubMed Google Scholar
Bermudez-Rattoni, F. Molecular mechanisms of taste-recognition memory. Nature Rev. Neurosci.5, 209–217 (2004). ArticleCAS Google Scholar