The neural mechanisms of gustation: a distributed processing code (original) (raw)

References

  1. Marks, L. E. & Wheeler, M. E. Attention and the detectability of weak taste stimuli. Chem. Senses 23, 19–29 (1998).
    Article CAS PubMed Google Scholar
  2. Breslin, P. A. & Huang, L. Human taste: peripheral anatomy, taste transduction, and coding. Adv. Otorhinolaryngol. 63, 152–190 (2006).
    PubMed Google Scholar
  3. Desimone, J. A. & Lyall, V. Salty and sour taste: sensing of sodium and protons by the tongue. Am. J. Physiol. Gastrointest. Liver Physiol. 29 June 2006 (doi:10.1152/ajpgi.00235).
  4. Margolskee, R. F. Sensory systems: taste perception. Sci. STKE 290, tr20 (2005).
    Google Scholar
  5. Roper, S. D. Cell communication in taste buds. Cell. Mol. Life Sci. 63, 1494–1500 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  6. Scott, K. Taste recognition. Neuron 48, 455–464 (2005).
    Article CAS PubMed Google Scholar
  7. Smith, D. V. & St. John, S. J. Neural coding of gustatory information. Curr. Opin. Neurobiol. 9, 427–435 (1999).
    Article CAS PubMed Google Scholar
  8. de Araujo, I. E. et al. Neural ensemble coding of satiety states. Neuron 51, 483–494 (2006).
    Article CAS PubMed Google Scholar
  9. Fontanini, A. & Katz, D. B. State-dependent modulation of time-varying gustatory responses. J. Neurophysiol. 23 Aug 2006 (doi:10.1152/jn.00804).
  10. Gutierrez, R., Carmena, J. M., Nicolelis, M. A. & Simon, S. A. Orbitofrontal ensemble activity monitors licking and distinguishes among natural rewards. J. Neurophysiol. 95, 119–133 (2006).
    Article PubMed Google Scholar
  11. Stapleton, J. A., Lavine, M., Wolpert, R., Nicolelis, M. A. L. & Simon, S. A. Rapid taste responses in the gustatory cortex during licking. J. Neurosci. 26, 4126–4138 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  12. Finger, T. E. & Simon, S. A. in The Neurobiology of Taste and Smell (eds Finger, T. E., Silver, W. L. & Restrepo, D.) 287–314 (Wiley-Liss, New York, 2002).
    Google Scholar
  13. Scott, T. R. & Verhagen, J. V. Taste as a factor in the management of nutrition. Nutrition 16, 874–885 (2000).
    Article CAS PubMed Google Scholar
  14. Spector, A. C. & Travers, S. P. The representation of taste quality in the mammalian nervous system. Behav. Cogn. Neurosci. Rev. 4, 143–191 (2005).
    Article PubMed Google Scholar
  15. Holland, V. F., Zampighi, G. A. & Simon, S. A. Morphology of fungiform papillae in canine lingual epithelium: location of intercellular junctions in the epithelium. J. Comp. Neurol. 279, 13–27 (1989).
    Article CAS PubMed Google Scholar
  16. Yang, J. & Roper, S. D. Dye-coupling in taste buds in the mudpuppy. J. Neurosci. 7, 3561–3565 (1987).
    Article CAS PubMed PubMed Central Google Scholar
  17. Yoshii, K. Gap junctions among taste bud cells in mouse fungiform papillae. Chem. Senses 30, i35–i36 (2005).
    Article CAS PubMed Google Scholar
  18. Herness, S., Zhao, F. L., Kaya, N., Lu, S. G. & Cao, Y. Communication routes within the taste bud by neurotransmitters and neuropeptides. Chem. Senses 30, i37–i38 (2005).
    Article CAS PubMed Google Scholar
  19. Zhao, F. L. et al. Expression, physiological action, and coexpression patterns of neuropeptide Y in rat taste-bud cells. Proc. Natl Acad. Sci. USA 102, 11100–11105 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  20. Danilova, V., Danilov, Y., Roberts, T. & Hellekant, G. Sense of taste of the common marmoset: recordings from the chorda tympani and glossopharyngeal nerves. J. Neurophys. 88, 579–594 (2002).
    Article Google Scholar
  21. Hanamori, T., Miller, I. J. Jr & Smith, D. V. Gustatory responsiveness of fibers in the hamster glossopharyngeal nerve. J. Neurophysiol. 60, 478–498 (1988).
    Article CAS PubMed Google Scholar
  22. Spector, A. C. Linking gustatory neurobiology to behavior in vertebrates. Neurosci. Biobehav. Rev. 391, 391–416 (2000).
    Article Google Scholar
  23. Travers, S. P. in Mechanisms of Taste Transduction (eds Simon, S. A. & Roper, S. D.) 339–395 (CRC, Boca Raton, 1993).
    Google Scholar
  24. Finger, T. E. et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310, 1495–1499 (2005).
    Article CAS PubMed Google Scholar
  25. Bigiani, A. R., Delay, R. J., Chaudhari, N., Kinnamon, S. C. & Roper, S. D. Responses to glutamate in rat taste cells. J. Neurophysiol. 77, 3048–3059 (1997).
    Article CAS PubMed Google Scholar
  26. Huang, Y. J. et al. Mouse taste buds use serotonin as a neurotransmitter. J. Neurosci. 25, 843–847 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  27. Ogura, T. Acetylcholine increases intracellular Ca2+ in taste cells via activation of muscarinic receptors. J. Neurophysiol. 87, 2643–2649 (2002).
    Article CAS PubMed Google Scholar
  28. Bradbury, J. Taste perception: cracking the code. PLoS Biol. 2, e64 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  29. Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003).
    Article CAS PubMed Google Scholar
  30. Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693–702 (2000).
    Article CAS PubMed Google Scholar
  31. Chrandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000).
    Article Google Scholar
  32. Liu, D. & Liman, E. R. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl Acad. Sci. USA 100, 15160–15165 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  33. Max, M. et al. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nature Genet. 28, 58–63 (2001).
    CAS PubMed Google Scholar
  34. Montmayeur, J. P., Liberlis, S. D., Matsunami, H. & Buck, L. A candidate taste receptor gene near a sweet taste locus. Nature Neurosci. 4, 492–498 (2001).
    Article CAS PubMed Google Scholar
  35. Mueller, K. L. et al. The receptors and coding logic for bitter taste. Nature 434, 225–229 (2005).
    Article CAS PubMed Google Scholar
  36. Perez, C. A., Margolskee, R. F., Kinnamon, S. C. & Ogura, T. Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Cell Calcium 33, 541–549 (2003).
    Article CAS PubMed Google Scholar
  37. Zhao, G. Q. et al. The receptors for mammalian sweet and umami taste. Cell 115, 255–266 (2003).
    Article CAS PubMed Google Scholar
  38. Huang, A. L. et al. The cells and logic for mammalian sour taste detection. Nature 442, 934–938 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  39. Kellenberger, S. & Schild, L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82, 735–767 (2002).
    Article CAS PubMed Google Scholar
  40. Nelson, G., Hoon, M. A., Chandrashekar, J., Ryba, N. J. P. & Zuker, C. S. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).
    Article CAS PubMed Google Scholar
  41. Galindo-Cuspinera, V., Winnig, M., Bufe, B., Meyerhof, W. & Breslin, P. A. A TAS1R receptor-based explanation of sweet 'water-taste'. Nature 441, 354–357 (2006).
    Article CAS PubMed Google Scholar
  42. Nelson, G. et al. An amino-acid taste receptor. Nature 416, 199–202 (2002).
    Article CAS PubMed Google Scholar
  43. Rong, M. et al. Signal transduction of umami taste: insights from knockout mice. Chem. Senses 30, i33–i34 (2005).
    Article CAS PubMed Google Scholar
  44. Chaudhari, N. et al. The taste of monosodium glutamate: membrane receptors in taste buds. J. Neurosci. 16, 3817–3826 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  45. Maruyama, Y., Pereira, E., Margolskee, R. F., Chaudhari, N. & Roper, S. D. Umami responses in mouse taste cells indicate more than one receptor. J. Neurosci. 26, 2227–2234 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  46. Ming, D., Ninomiya, T. & Margolskee, R. F. Blocking taste receptor activation of gustducin inhibits gustatory responses to bitter compounds. Proc. Natl Acad. Sci. USA 96, 9903–9908 (2000).
    Article Google Scholar
  47. Parry, C. M., Erkner, A. & le Coutre, J. Divergence of T2R chemosensory receptor families in humans, bonobos, and chimpanzees. Proc. Natl Acad. Sci. USA 101, 14830–14834 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  48. Nelson, T., Munger, S. & Boughter, J. Haplotypes at the Tas2r locus on distal chromosome 6 vary with quinine taste sensitivity in inbred mice. BMC Genet. 6, 32 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  49. Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000).
    Article CAS PubMed Google Scholar
  50. Bufe, B. et al. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr. Biol. 15, 322–327 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  51. Kim, U. K. & Drayna, D. Genetics of individual differences in bitter taste perception: lessons from the PTC gene. Clin. Genet. 67, 275–280 (2005).
    Article CAS PubMed Google Scholar
  52. Kretz, O., Barbry, P., Bock, R. & Lindemann, B. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J. Histochem. Cytochem. 47, 51–64 (1999).
    Article CAS PubMed Google Scholar
  53. Schiffman, S. S., Lockhead, E. & Maes, F. W. Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners. Proc. Natl Acad. Sci. USA 80, 6136–6140 (1983).
    Article CAS PubMed PubMed Central Google Scholar
  54. DeSimone, J. A. & Ferrell, F. Analysis of amiloride inhibition of chorda tympani taste response of rat to NaCl. Am. J. Physiol. Cell Physiol. 249, R52–R61 (1985).
    CAS Google Scholar
  55. Elliott, E. J. & Simon, S. A. The anion in salt taste: a possible role of tight junctions. Brain Res. 535, 9–17 (1990).
    Article CAS PubMed Google Scholar
  56. Ossebaard, C. A. & Smith, D. V. Effect of amiloride on the taste of NaCl, Na-gluconate and KCl in humans: implications for Na+ receptor mechanisms. Chem. Senses 20, 37–46 (1995).
    Article CAS PubMed Google Scholar
  57. Schiffman, S. S. Taste quality and neural coding: implications from psychophysics and neurophysiology. Physiol. Behav. 69, 147–159 (2000).
    Article CAS PubMed Google Scholar
  58. Stevens, D. A., Smith, R. F. & Lawless, H. T. Multidimensional scaling of ferrous sulfate and basic tastes. Physiol. Behav. 87, 272–279 (2006).
    Article CAS PubMed Google Scholar
  59. Lyall, V. et al. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J. Physiol. 558, 147–159 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  60. Lyall, V. et al. A novel vanilloid receptor-1 (VR-1) variant mammalian salt taste receptor. Chem. Senses 30, i42–i43 (2005).
    Article CAS PubMed Google Scholar
  61. Ishimaru, Y. et al. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl Acad. Sci. USA 103, 12569–12574 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  62. LopezJimenez, N. D. et al. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J. Neurochem. 98, 68–77 (2006).
    Article CAS PubMed Google Scholar
  63. Lyall, V. et al. Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction. Am. J. Physiol. Cell Physiol. 281, C1005–C1013 (2001).
    Article CAS PubMed Google Scholar
  64. French, S. & Robinson, T. Fats and food intake. Curr. Opin. Clin. Nutr. Metab. Care 6, 629–634 (2003).
    Article CAS PubMed Google Scholar
  65. Kadohisa, M., Verhagen, J. V. & Rolls, E. T. The primate amygdala: neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods. Neuroscience 132, 33–48 (2005).
    Article CAS PubMed Google Scholar
  66. Rolls, E. T. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol. Behav. 85, 45–56 (2005).
    Article CAS PubMed Google Scholar
  67. Laugerette, F. et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Invest. 115, 3177–3184 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  68. Kawai, T. & Fushiki, T. Importance of lipolysis in oral cavity for orosensory detection of fat. Am. J. Physiol 285, R447–R454 (2003).
    CAS Google Scholar
  69. Gilbertson, T. A., Fontenot, D. T., Liu, L., Zhang, H. & Monroe, W. T. Fatty acid modulation of K+ channels in taste receptor cells: gustatory cues for dietary fat. Am. J. Physiol. Cell Physiol. 272, C1203–C1210 (1997).
    Article CAS Google Scholar
  70. Gilbertson, T. A., Liu, L., Kim, I., Burks, C. A. & Hansen, D. R. Fatty acid responses in taste cells from obesity-prone and -resistant rats. Physiol. Behav. 86, 681–690 (2005).
    Article CAS PubMed Google Scholar
  71. Lindemann, B. Sodium taste. Curr. Opin. Neph. Hypertens. 6, 425–429 (1997).
    Article CAS Google Scholar
  72. Rajan, R., Clement, J. P. & Bhalla, U. S. Rats smell in stereo. Science 311, 667–670 (2006).
    Article CAS Google Scholar
  73. Lu, S. G., Kaya, N. & Herness, M. S. Cholecystokinin increases intracellular calcium levels in rat posterior taste receptor cells. Chem. Senses 25, 685 (2000).
    Google Scholar
  74. Zhao, F. L. & Herness, M. S. Physiological actions of cholecystokinin on rat taste receptor cells. Chem. Senses 26, 1065 (2001).
    Google Scholar
  75. Cruz, A. & Green, B. G. Thermal stimulation of taste. Nature 403, 889–892 (2000).
    Article CAS PubMed Google Scholar
  76. Bartoshuck, L. M., Rennert, K., Rodin, J. & Stevens, J. C. Effects of temperature on the perceived sweetness of sucrose. Physiol. Behav. 28, 905–910 (2001).
    Article Google Scholar
  77. Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).
    Article CAS PubMed Google Scholar
  78. Green, B. G. Sensory interactions between capsaicin and temperature. Chem. Senses 11, 371–382 (1986).
    Article CAS Google Scholar
  79. Liu, L. & Simon, S. A. Capsaicin, acid and heat evoked currents in rat trigeminal ganglion neurons: evidence for functional VR1 receptors. Physiol. Behav 69, 363–378 (2000).
    Article CAS PubMed Google Scholar
  80. Patapoutaian, A. TRP channels and thermoreception. Chem. Senses 30, i193–i194 (2005).
    Article CAS Google Scholar
  81. Halata, H. & Munger, B. L. The sensory innervation of primate facial skin 11 Vermilion boarder and mucosa of lip. Brain Res. Rev. 5, 81–107 (1983).
    Article Google Scholar
  82. Munger, B. L. in Mechanisms of Taste Transduction (eds Simon, S. A. & Roper, S. D.) 83–102 (CRC, Boca Raton, 1993).
    Google Scholar
  83. Liu, L. & Simon, S. A. Capsaicin-induced currents with distinct desensitization and Ca+ dependence in rat trigeminal ganglion cells. J. Neurophysiol. 75, 1503–1514 (1996).
    Article CAS PubMed Google Scholar
  84. Wang, Y., Erickson, R. E. & Simon, S. A. Modulation of chorda tympani nerve activity by lingual nerve stimulation. J. Neurophysiol. 73, 1468–1483 (1995).
    Article CAS PubMed Google Scholar
  85. Chuang, H. H., Neuhausser, W. M. & Julius, D. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43, 859–869 (2004).
    Article CAS PubMed Google Scholar
  86. Xu, H., Delling, M., Jun, J. C. & Clapham, D. E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neurosci. 9, 628–635 (2006).
    Article CAS PubMed Google Scholar
  87. Carstens, E., Kuenzler, N. & Handwerker, K. O. Activation of neurons in rat trigeminal subnucleus caudalis by different irritant chemicals applied to the oral or ocular mucosa. J. Neurophysiol. 80, 465–492 (1998).
    Article CAS PubMed Google Scholar
  88. Simons, C. T., Dressier, J. M., Carstens, M. I., O'Mahoney, M. & Carstens, E. Neurobiological and psychophysical mechanisms underlying the oral sensation produced by carbonated water. J. Neurosci. 15, 8134–8144 (1999).
    Article Google Scholar
  89. Wang, Y., Erickson, R. P. & Simon, S. A. Selectivity of lingual nerve fibers to chemical stimuli. J. Gen. Physiol. 101, 843–866 (1993).
    Article CAS PubMed Google Scholar
  90. Danilova, V. & Hellekant, G. Oral sensation of ethanol in a primate model III: responses in the lingual branch of the trigeminal nerve of Macaca mulatta. Alcohol 26, 3–16 (2002).
    Article CAS PubMed Google Scholar
  91. Bennick, A. Interaction of plant polyphenols with salivary proteins. Crit. Rev. Oral Bio. Med. 13, 184–196 (2002).
    Article Google Scholar
  92. Breslin, P. A. S., Gilmore, M. M., Beauchamp, G. K. & Green, B. G. Physiophysical evidence that oral astringency is a tactile sensation. Chem. Senses 18, 405–417 (1993).
    Article CAS Google Scholar
  93. Kawamura, Y., Okamoto, J. & Funakoshi, M. A role of oral afferents in aversion to taste solutions. Physiol. Behav. 3, 537–542 (1968).
    Article CAS Google Scholar
  94. Erickson, R. P. Stimulus coding in topographic and non-topographic afferent modalities. Psychol. Rev. 75, 447–465 (1968).
    Article CAS PubMed Google Scholar
  95. Frank, M. An analysis of hamster afferent taste nerve response functions. J. Gen. Physiol. 61, 588–618 (1973).
    Article CAS PubMed PubMed Central Google Scholar
  96. Pfaffman, C. The afferent code for sensory quality. Am. Psychol. 14, 226–232 (1959).
    Article Google Scholar
  97. Caicedo, A., Kim, K. N. & Roper, S. D. Individual mouse taste cells respond to multiple chemical stimuli. J. Physiol. 544, 501–509 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  98. Gilbertson, T. A., Boughter, J. D., Zhang, H. & Smith, D. V. Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J. Neurosci. 27, 4931–4941 (2001).
    Article Google Scholar
  99. Boudreau, J. C. et al. Neurophysiology of geniculate ganglion (facial nerve) taste systems: species comparisons. Chem. Senses 10, 89–127 (1985).
    Article Google Scholar
  100. Frank, M. F. Taste responsive neurons of the glossopharnygeal nerve of the rat. J. Neurophysiol. 65, 1452–1462 (1991).
    Article CAS PubMed Google Scholar
  101. Frank, M. F., Bieber, S. L. & Smith, D. V. The organization of taste sensibilities in hamster chorda tympani nerve fibers. J. Gen. Physiol. 91, 861–896 (1988).
    Article CAS PubMed PubMed Central Google Scholar
  102. Danilova, V. & Hellekant, G. Sense of taste in a new world monkey, the common marmoset. II. Link between behavior and nerve activity. J. Neurophys. 92, 1067–1076 (2004).
    Article Google Scholar
  103. Hellekant, G., Ninomiya, T. & Danilova, V. Taste in chimpanzees. III: Labeled-line coding in sweet taste. Physiol. Behav. 65, 191–200 (1998).
    Article CAS PubMed Google Scholar
  104. Grill, H. J. & Norgren, R. Chronically decerebrate rats demonstrate satiation but not bait shyness. Science 201, 267–269 (1978).
    Article CAS PubMed Google Scholar
  105. Jones, L. M., Fontanini, A. & Katz, D. B. Gustatory processing: a dynamic systems approach. Curr. Opin. Neurobiol. 16, 420–428 (2006).
    Article CAS PubMed Google Scholar
  106. Hamilton, R. B. & Norgren, R. Central projections of gustatory nerves in the rat. J. Comp. Neurol. 222, 560–577 (1984).
    Article CAS PubMed Google Scholar
  107. Boucher, Y., Simons, C. T., Faurion, A., Azerad, J. & Carstens, E. Trigeminal modulation of gustatory neurons in the nucleus of the solitary tract. Brain Res. 973, 265–274 (2003).
    Article CAS PubMed Google Scholar
  108. van Buskirk, R. L. & Erickson, R. P. Responses in the rostral medulla to electrical stimulation of an intranasal trigeminal nerve convergence of oral and nasal inputs. Neurosci. Lett. 5, 312–326 (2003).
    Google Scholar
  109. Travagli, R. A., Hermann, G. E., Browning, K. N. & Rogers, R. C. Brainstem circuits regulating gastric function. Annu. Rev. Physiol. 68, 279–305 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  110. Zhang, X., Fogel, R. & Renehan, W. E. Relationships between the morphology and function of gastric- and intestine-sensitive neurons in the nucleus of the solitary tract. J. Comp. Neurol. 363, 37–52 (1995).
    Article CAS PubMed Google Scholar
  111. Berthoud, H. R., Earle, T., Zheng, H., Patterson, L. M. & Phifer, C. Food-related gastrointestinal signals activate caudal brainstem neurons expressing both NMDA and AMPA receptors. Brain Res. 915, 143–154 (2001).
    Article CAS PubMed Google Scholar
  112. Glenn, J. F. & Erickson, R. P. Gastric modulation of gustatory afferent activity. Physiol. Behav. 16, 561–568 (1976).
    Article Google Scholar
  113. Simons, C. T., Boucher, Y., Iodi-Carstens, M. & Carstens, E. Nicotine suppression of gustatory responses of neurons in the nucleus of the solitary tract. J. Neurophys. 96, 1877–1886 (2006).
    Article CAS Google Scholar
  114. Norgren, R. & Grill, H. J. in The Physiological Mechanisms of Motivation (ed. Pfaff, D. W.) 99–131 (Springer, New York, 1982).
    Book Google Scholar
  115. Cunningham, E. T. Jr & Sawchenko, P. E. Dorsal medullary pathways subserving oromotor reflexes in the rat: implications for the central neural control of swallowing. J. Comp. Neurol. 417, 448–466 (2000).
    Article PubMed Google Scholar
  116. Travers, J. B., Dinardo, L. A. & Karimnamazi, H. Motor and Premotor Mechanisms of Licking. Neurosci. Biobehav. Rev. 21, 631–647 (1997).
    Article CAS PubMed Google Scholar
  117. Travers, S. P. & Norgren, R. Organization of orosensory responses in the nucleus of the solitary tract of rat. J. Neurophysiol. 73, 2144–2162 (1995).
    Article CAS PubMed Google Scholar
  118. Sugita, M. & Shiba, Y. Genetic tracing shows segregation of taste circuitries for bitter and sweet. Science 309, 781–785 (2005).
    Article CAS PubMed Google Scholar
  119. Scott, T. R., Yaxley, S., Sienkiewicz, Z. J. & Rolls, E. T. Taste responses in the nucleus tractus solitarius of the behaving monkey. J. Neurophysiol. 55, 182–200 (1986).
    Article CAS PubMed Google Scholar
  120. Lemon, C. H. & Smith, D. V. Neural representation of bitter taste in the nucleus of the solitary tract. J. Neurophysiol. 94, 3719–3729 (2005).
    Article CAS PubMed Google Scholar
  121. Lemon, C. H. & Smith, D. V. Influence of response variability on the coding performance of central gustatory neurons. J. Neurosci. 26, 7433–7443 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  122. Di Lorenzo, P. M., Halloak, R. M. & Kennedy, D. P. Temporal coding of sensation: mimicking taste quality with electrical stimulation of the brain. Behav. Neurosci. 117, 1423–1433 (2003).
    Article PubMed Google Scholar
  123. van der Kooy, D., Koda, L. Y., McGinty, J. F., Gerfen, C. R. & Bloom, F. E. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J. Comp. Neurol. 224, 1–24 (1984).
    Article CAS PubMed Google Scholar
  124. Whitehead, M. C., Bergula, A. & Holliday, K. Forebrain projections to the rostral nucleus of the solitary tract in the hamster. J. Comp. Neurol. 422, 429–447 (2000).
    Article CAS PubMed Google Scholar
  125. Di Lorenzo, P. M. & Monroe, S. Corticofugal influence on taste responses in the nucleus of the solitary tract in the rat. J. Neurophysiol. 74, 258–272 (1995).
    Article CAS PubMed Google Scholar
  126. Smith, D. V., Li, C. S. & Cho, Y. K. Forebrain modulation of brainstem gustatory processing. Chem. Senses 30, i176–i177 (2005).
    Article PubMed Google Scholar
  127. Tokita, K., Karadi, Z., Shimura, T. & Yamamoto, T. Centrifugal inputs modulate taste aversion learning associated parabrachial neuronal activities. J. Neurophysiol. 92, 265–279 (2004).
    Article PubMed Google Scholar
  128. Li, C. S., Cho, Y. K. & Smith, D. V. Modulation of parabrachial taste neurons by electrical and chemical stimulation of the lateral hypothalamus and amygdala. J. Neurophysiol. 93, 1183–1196 (2005).
    Article PubMed Google Scholar
  129. Lundy, R. F. Jr & Norgren, R. Activity in the hypothalamus, amygdala, and cortex generates bilateral and convergent modulation of pontine gustatory neurons. J. Neurophysiol. 91, 1143–1157 (2004).
    Article PubMed Google Scholar
  130. Di Lorenzo, P. M. Corticofugal influence on taste responses in the parabrachial pons of the rat. Brain Res. 530, 73–84 (1990).
    Article CAS PubMed Google Scholar
  131. Erickson, R. P. A neural metric. Neurosci. Behav. Rev. 10, 377–386 (1986).
    Article CAS Google Scholar
  132. Katz, D. B., Nicolelis, M. A. & Simon, S. A. Gustatory processing is dynamic and distributed. Curr. Opin. Neurobiol. 12, 448–454 (2002).
    Article CAS PubMed Google Scholar
  133. Kadohisa, M., Rolls, E. T. & Verhagen, J. V. Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex and amygdala. Chem. Senses 30, 401–419 (2005).
    Article PubMed Google Scholar
  134. Hanamori, T., Kunitake, T., Kato, K. & Kannan, H. Responses of neurons in the insular cortex to gustatory, visceral and nociceptive stimuli in rats. J. Neurophysiol. 79, 2535–2545 (1998).
    Article CAS PubMed Google Scholar
  135. Hanamori, T., Kunitake, T., Kato, K. & Kannan, H. Neurons in the posterior insular cortex are responsive to gustatory stimulation of the pharyngolarnyx, baroreceptors and chemoreceptor stimulation and tail pinch in rats. Brain Res. 785, 97–106 (1999).
    Article Google Scholar
  136. Katz, D. B., Simon, S. A. & Nicolelis, M. A. Taste-specific neuronal ensembles in the gustatory cortex of awake rats. J. Neurosci. 22, 1850–1857 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  137. Halpern, B. P. & Tapper, D. N. Taste stimuli: quality coding time. Science 171, 1256–1258 (1971).
    Article CAS PubMed Google Scholar
  138. Katz, D. B., Simon, S. A. & Nicolelis, M. A. Dynamic and multimodal responses of gustatory cortical neurons in awake rats. J. Neurosci. 21, 4478–4489 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  139. Ogawa, H. & Wang, X. D. Neurons in the cortical taste area receive nociceptive inputs from the whole body as well as the oral cavity in the rat. Neurosci. Lett. 322, 87–90 (2002).
    Article CAS PubMed Google Scholar
  140. Yamamoto, T., Yuyama, N. & Kawamura, Y. Cortical neurons responding to tactile, thermal and taste stimulations of the rat tongue. Brain Res. 221, 411–415 (1981).
    Article Google Scholar
  141. Dalton, P., Doolittle, N., Nagata, H. & Breslin, P. A. S. The merging of the senses: integration of subthreshold taste and smell. Nature Neurosci. 3, 431–432 (2000).
    Article CAS PubMed Google Scholar
  142. Todrank, J. & Bartoshuk, L. M. A taste illusion: taste sensation localized by touch. Physiol. Behav. 50, 1027–1031 (1991).
    Article CAS PubMed Google Scholar
  143. Ito, S. & Ogawa, H. Neural activity in fronto-opercular cortex of macaque monkeys during tasting and mastication. Jpn J. Physiol. 44, 141–156 (1994).
    Article CAS PubMed Google Scholar
  144. Scott, T. R., Yaxley, S., Sienkiewicz, Z. J. & Rolls, E. T. Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J. Neurophysiol. 56, 876–890 (1986).
    Article CAS PubMed Google Scholar
  145. de Araujo, I. E. & Rolls, E. T. Representation in the human brain of food texture and oral fat. J. Neurosci. 24, 3086–3093 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  146. Zald, D. H. & Pardo, J. V. Cortical activation induced by intraoral stimulation with water in humans. Chem. Senses 25, 267–276 (2000).
    Article CAS PubMed Google Scholar
  147. Rolls, E. T., Critchley, H. D., Browning, A. S., Hernadi, A. & Lenard, L. Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. J. Neurosci. 19, 1532–1540 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  148. Verhagen, J. V., Rolls, E. T. & Kadohisa, M. Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. J. Neurophys. 90, 1514–1525 (2003).
    Article Google Scholar
  149. Franks, K. M. & Isaacson, J. S. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Neuron 49, 357–363 (2006).
    Article CAS PubMed Google Scholar
  150. Sewards, T. V. & Sewards, M. A. Cortical association areas in the gustatory system. Neurosci. Biobehav. Rev. 25, 395–407 (2001).
    Article CAS PubMed Google Scholar
  151. Small, D. M., Jones-Gotman, M., Zatorre, R. J., Petrides, M. & Evans, A. C. Flavor processing: more than the sum of its parts. Neuroreport 8, 3913–3917 (1997).
    Article CAS PubMed Google Scholar
  152. de Araujo, I. E., Rolls, E. T., Kringelbach, M. L., McGlone, F. & Phillips, N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur. J. Neurosci. 18, 2059–2068 (2003).
    Article PubMed Google Scholar
  153. Small, D. M. et al. Experience-dependent neural integration of taste and smell in the human brain. J. Neurophysiol. 92, 1892–1903 (2004).
    Article PubMed Google Scholar
  154. Mickley, G. A. et al. Dynamic processing of taste aversion extinction in the brain. Brain Res. 1016, 79–89 (2004).
    Article CAS PubMed Google Scholar
  155. Garcia, J., Kimeldorf, D. J. & Koelling, R. A. Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 122, 157–158 (1955).
    CAS PubMed Google Scholar
  156. Sclafani, A. Post-ingestive positive controls of ingestive behavior. Appetite 36, 79–83 (2001).
    Article CAS PubMed Google Scholar
  157. Rolls, E. T., Murzi, E., Yaxley, S., Thorpe, S. J. & Simpson, S. J. Sensory-specific satiety: food-specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey. Brain Res. 368, 79–86 (1986).
    Article CAS PubMed Google Scholar
  158. Rolls, E. T., Sienkiewicz, Z. J. & Yaxley, S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci. 1, 53–60 (1989).
    Article PubMed Google Scholar
  159. O'Doherty, J., Rolls, E. T., Francis, S., Bowtell, R. & McGlone, F. Representation of pleasant and aversive taste in the human brain. J. Neurophys. 85, 1315–1321 (2001).
    Article CAS Google Scholar
  160. Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C. & Jones-Gotman, M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124 1720–1733 (2001).
    Article CAS PubMed Google Scholar
  161. Gottfried, J. A., O'Doherty, J. & Dolan, R. J. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301, 1104–1107 (2004).
    Article CAS Google Scholar
  162. O'Doherty, J. et al. Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport 11, 399–403 (2000).
    Article CAS PubMed Google Scholar
  163. de Araujo, I. E., Kringelbach, M. L., Rolls, E. T. & McGlone, F. Human cortical responses to water in the mouth, and the effects of thirst. J. Neurophysiol. 90, 1865–1876 (2003).
    Article PubMed Google Scholar
  164. Bermudez-Rattoni, F. Molecular mechanisms of taste-recognition memory. Nature Rev. Neurosci. 5, 209–217 (2004).
    Article CAS Google Scholar

Download references