Rif1 binds to G quadruplexes and suppresses replication over long distances (original) (raw)
References
Masai, H., Matsumoto, S., You, Z., Yoshizawa-Sugata, N. & Oda, M. Eukaryotic chromosome DNA replication: where, when, and how? Annu. Rev. Biochem.79, 89–130 (2010). ArticleCAS Google Scholar
Méchali, M., Yoshida, K., Coulombe, P. & Pasero, P. Genetic and epigenetic determinants of DNA replication origins, position and activation. Curr. Opin. Genet. Dev.23, 124–131 (2013). Article Google Scholar
Aparicio, O.M. Location, location, location: it's all in the timing for replication origins. Genes Dev.27, 117–128 (2013). ArticleCAS Google Scholar
Matsumoto, S., Hayano, M., Kanoh, Y. & Masai, H. Multiple pathways can bypass the essential role of fission yeast Hsk1 kinase in DNA replication initiation. J. Cell Biol.195, 387–401 (2011). ArticleCAS Google Scholar
Knott, S.R. et al. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell148, 99–111 (2012). ArticleCAS Google Scholar
Yoshida, K., Poveda, A. & Pasero, P. Time to be versatile: regulation of the replication timing program in budding yeast. J. Mol. Biol.425, 4696–4705 (2013). ArticleCAS Google Scholar
Hayano, M. et al. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev.26, 137–150 (2012). ArticleCAS Google Scholar
Yamazaki, S. et al. Rif1 regulates the replication timing domains on the human genome. EMBO J.31, 3667–3677 (2012). ArticleCAS Google Scholar
Cornacchia, D. et al. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J.31, 3678–3690 (2012). ArticleCAS Google Scholar
Hiraga, S. et al. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev.28, 372–383 (2014). ArticleCAS Google Scholar
Davé, A., Cooley, C., Garg, M. & Bianchi, A. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Reports7, 53–61 (2014). Article Google Scholar
Mattarocci, S. et al. Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Reports7, 62–69 (2014). ArticleCAS Google Scholar
Silverman, J., Takai, H., Buonomo, S.B.C., Eisenhaber, F. & De Lange, T. Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev.18, 2108–2119 (2004). ArticleCAS Google Scholar
Zimmermann, M., Lottersberger, F., Buonomo, S.B., Sfeir, A. & de Lange, T. 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science339, 700–704 (2013). ArticleCAS Google Scholar
Di Virgilio, M. et al. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science339, 711–715 (2013). ArticleCAS Google Scholar
Chapman, J.R. et al. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol. Cell49, 858–871 (2013). ArticleCAS Google Scholar
Escribano-Díaz, C. et al. A cell cycle-dependent regulatory circuit composed of 53BP1–RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol. Cell49, 872–883 (2013). Article Google Scholar
Callen, E. et al. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell153, 1266–1280 (2013). ArticleCAS Google Scholar
Feng, L., Fong, K.W., Wang, J., Wang, W. & Chen, J. RIF1 counteracts BRCA1-mediated end resection during DNA repair. J. Biol. Chem.288, 11135–11143 (2013). ArticleCAS Google Scholar
Wang, J. et al. A protein interaction network for pluripotency of embryonic stem cells. Nature444, 364–368 (2006). ArticleCAS Google Scholar
Dan, J. et al. Rif1 maintains telomere length homeostasis of ESCs by mediating heterochromatin silencing. Dev. Cell29, 7–19 (2014). ArticleCAS Google Scholar
Kanoh, J. & Ishikawa, F. spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr. Biol.11, 1624–1630 (2001). ArticleCAS Google Scholar
Bailey, T.L. et al. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res.37, W202–W208 (2009). ArticleCAS Google Scholar
Tanizawa, H. et al. Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res.38, 8164–8177 (2010). ArticleCAS Google Scholar
Bochman, M.L., Paeschke, K. & Zakian, V.A. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet.13, 770–780 (2012). ArticleCAS Google Scholar
Burge, S., Parkinson, G.N., Hazel, P., Todd, A.K. & Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res.34, 5402–5415 (2006). ArticleCAS Google Scholar
Fletcher, T.M., Sun, D., Salazar, M. & Hurley, L.H. Effect of DNA secondary structure on human telomerase activity. Biochemistry37, 5536–5541 (1998). ArticleCAS Google Scholar
Iida, K. et al. Fluorescent-ligand-mediated screening of G-quadruplex structures using a DNA microarray. Angew. Chem. Int. Ed. Engl.52, 12052–12055 (2013). ArticleCAS Google Scholar
Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem.5, 182–186 (2013). ArticleCAS Google Scholar
Uno, S., You, Z. & Masai, H. Purification of replication factors using insect and mammalian cell expression systems. Methods57, 214–221 (2012). ArticleCAS Google Scholar
Xu, D. et al. Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. EMBO J.29, 3140–3155 (2010). ArticleCAS Google Scholar
Sukackaite, R. et al. Structural and biophysical characterization of murine Rif1 C terminus reveals high specificity for DNA cruciform structures. J. Biol. Chem.289, 13903–13911 (2014). ArticleCAS Google Scholar
Sengar, A., Hiddi, B. & Phan, A.T. Formation of G-quadruplexes in poly-G sequences: structure of a propeller-type parallel-stranded G-quadruplex formed by a G15 stretch. Biochemistry53, 7718–7723 (2014). ArticleCAS Google Scholar
Sabouri, N., Capra, J. & Zakian, V.A. The essential Schizosaccharomyces pombe Pfh1 DNA helicase promotes fork movement past G-quadruplex motifs to prevent DNA damage. BMC Biol.12, 101 (2014). Article Google Scholar
Park, S. et al. Palmitoylation controls the dynamics of budding-yeast heterochromatin via the telomere-binding protein Rif1. Proc. Natl. Acad. Sci. USA108, 14572–14577 (2011). ArticleCAS Google Scholar
Cayrou, C. et al. New insights into replication origin characteristics in metazoans. Cell Cycle11, 658–667 (2012). ArticleCAS Google Scholar
Valton, A.L. et al. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J.33, 732–746 (2014). ArticleCAS Google Scholar
Shi, T. et al. Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions. Cell153, 1340–1353 (2013). ArticleCAS Google Scholar
Katou, Y. et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature424, 1078–1083 (2003). ArticleCAS Google Scholar
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol.10, R25 (2009). Article Google Scholar
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol.9, R137 (2008). Article Google Scholar
Nicol, J.W., Helt, G.A., Blanchard, S.G., Raja, A. & Loraine, A.E. The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics25, 2730–2731 (2009). ArticleCAS Google Scholar
Machanick, P. & Bailey, T.L. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics27, 1696–1697 (2011). ArticleCAS Google Scholar
Zheng, K.W., Chen, Z., Hao, Y.H. & Tan, Z. Molecular crowding creates an essential environment for the formation of stable -quadruplexe G-quadruplexes in long double-stranded DNA. Nucleic Acids Res.38, 327–338 (2010). ArticleCAS Google Scholar
Martin, C.D. et al. A simple vector system to improve performance and utilisation of recombinant antibodies. BMC Biotechnol.6, 46 (2006). Article Google Scholar
Nishitani, H., Lygerou, Z., Nishimoto, T. & Nurse, P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature404, 625–628 (2000). ArticleCAS Google Scholar