Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery (original) (raw)
Kamiya H, Tsuchiya H, Yamazaki J, Harashima H . Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adv Drug Deliv Rev 2001; 52: 153–164. ArticleCASPubMed Google Scholar
Khalil IA, Kogure K, Akita H, Harashima H . Uptake pathways and subsequent intracellular trafficking in non-viral gene delivery. Pharm Rev 2006; 58: 32–45. ArticleCASPubMed Google Scholar
Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ . Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 1995; 270: 18997–19007. ArticleCASPubMed Google Scholar
Bally MB, Harvie P, Wong FM, Kong S, Wasan EK, Reimer DL . Biological barriers to cellular delivery of lipid-based DNA carriers. Adv Drug Deliv Rev 1999; 38: 291–315. ArticleCASPubMed Google Scholar
Ochiai H, Harashima H, Kamiya H . Intranuclear disposition of exogenous DNA in vivo: silencing, methylation and fragmentation. FEBS Lett 2005; 580: 918–922. Article Google Scholar
Lee RJ, Huang L . Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem 1996; 271: 8481–8487. ArticleCASPubMed Google Scholar
Kakudo T, Chaki S, Futaki S, Nakase I, Akaji K, Kawakami T et al. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry 2004; 18: 5618–5628. Article Google Scholar
Zanta MA, Belguise-Valladier P, Behr JP . Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA 1999; 96: 91–96. ArticleCASPubMedPubMed Central Google Scholar
Kamiya H, Akita H, Harashima H . Pharmacokinetic and pharmacodynamic considerations in gene therapy. Drug Discov Today 2003; 8: 990–996. ArticleCASPubMed Google Scholar
Hama S, Akita H, Ito R, Mizuguchi H, Hayakawa T, Harashima H . Quantitative comparison of intracellular trafficking and nuclear transcription between adenoviral and lipoplex systems. Mol Ther 2006; 13: 786–794. ArticleCASPubMed Google Scholar
Khalil IA, Kogure K, Futaki S, Harashima H . High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J Biol Chem 2006; 281: 3544–3551. ArticleCASPubMed Google Scholar
Khalil IA, Futaki S, Niwa M, Baba Y, Kaji N, Kamiya H et al. Mechanism of improved gene transfer by the N-terminal stearylation of octaarginine: enhanced cellular association by hydrophobic core formation. Gene Ther 2004; 11: 636–644. ArticleCASPubMed Google Scholar
Akita H, Khalil IA, Kogure K, Harashima H . Pharmacokinetic considerations in nonviral gene delivery. In: Taira K, Kataoka K, Niidome T (eds). Non-Viral Gene Delivery: Gene Design and Delivery. Springer-Verlag: Tokyo, 2005, pp 135–154. Chapter Google Scholar
Kogure K, Akita H, Kamiya H, Harashima H . Programmed packaging: a new drug delivery system and its application to gene therapy. In: Knablein J (ed). Modern Biopharmaceuticals. Design, Development and Optimization, vol. 4. Wiley-VCH: Weinheim pp 1521–1536.
Kogure K, Moriguchi R, Sasaki K, Ueno M, Futaki S, Harashima H . Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method. J Control Release 2004; 98: 317–323. ArticleCASPubMed Google Scholar
Farhood H, Serbina N, Huang L . The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta 1995; 1235: 289–295. ArticlePubMed Google Scholar
Salone B, Martina Y, Piersanti S, Cundari E, Cherubini G, Franqueville L et al. Integrin alpha3beta1 is an alternative cellular receptor for adenovirus serotype 5. J Virol 2003; 77: 13448–13454. ArticleCASPubMedPubMed Central Google Scholar
Plank C, Mechtler K, Szoka Jr FC, Wagner E . Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther 1996; 7: 1437–1446. ArticleCASPubMed Google Scholar
Lamaze C, Schmid SL . The emergence of clathrin-independent pinocytic pathways. Curr Opin Cell Biol 1995; 7: 573–580. ArticleCASPubMed Google Scholar
Li L, Hoffman RM . The feasibility of targeted selective gene therapy of the hair follicle. Nat Med 1995; 1: 705–706. ArticlePubMed Google Scholar
Saito N, Zhao M, Li L, Baranov E, Yang M, Ohta Y et al. High efficiency genetic modification of hair follicles and growing hair shafts. Proc Natl Acad Sci USA 2002; 99: 13120–13124. ArticleCASPubMedPubMed Central Google Scholar
Domashenko A, Gupta S, Cotsarelis G . Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat Biotechnol 2000; 18: 420–423. ArticleCASPubMed Google Scholar
Yang M, Baranov E, Moossa AR, Penman S, Hoffman RM . Visualizing gene expression by whole-body fluorescence imaging. Proc Natl Acad Sci USA 2000; 97: 12278–12282. ArticleCASPubMedPubMed Central Google Scholar
Yuhki M, Yamada M, Kawano M, Iwasato T, Itohara S, Yoshida H et al. BMPR1A signaling is necessary for hair follicle cycling and hair shaft differentiation in mice. Development 2004; 131: 1825–1833. ArticleCASPubMed Google Scholar
Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E . Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol 2003; 163: 609–623. ArticleCASPubMedPubMed Central Google Scholar
Andl T, Ahn K, Kairo A, Chu EY, Wine-Lee L, Reddy ST et al. Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development 2003; 131: 2257–2268. Article Google Scholar
Handjiski BK, Eichmuller S, Hofmann U, Czarnetzki BM, Paus R . Alkaline phosphatase activity and localization during the murine hair cycle. Br J Dermatol 1994; 131: 303–310. ArticleCASPubMed Google Scholar
Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K et al. Arginine-rich peptides: an abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 2001; 276: 5836–5840. ArticleCASPubMed Google Scholar
Wadia JS, Stan RV, Dowdy SF . Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 2004; 10: 310–315. ArticleCASPubMed Google Scholar
Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y et al. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 2004; 10: 1011–1022. ArticleCASPubMed Google Scholar
Kaplan IM, Wadia JS, Dowdy SF . Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release 2005; 102: 247–253. ArticleCASPubMed Google Scholar
Akita H, Ito R, Khalil IA, Futaki S, Harashima H . Quantitative three-dimensional analysis of the intracellular trafficking of plasmid DNA transfected by a nonviral gene delivery system using confocal laser scanning microscopy. Mol Ther 2004; 9: 443–451. ArticleCASPubMed Google Scholar
Harris SS, Giorgio TD . Convective flow increases lipoplex delivery rate to in vitro cellular monolayers. Gene Ther 2005; 12: 512–520. ArticleCASPubMed Google Scholar
Moriguchi R, Kogure K, Akita H, Futaki S, Miyagishi M, Taira K et al. A multifunctional envelope-type nano device for novel gene delivery of siRNA plasmids. Int J Pharm 2005; 301: 277–285. ArticleCASPubMed Google Scholar
Futaki S, Ohashi W, Suzuki T, Niwa M, Tanaka S, Ueda K et al. Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem 2001; 12: 1005–1011. ArticleCASPubMed Google Scholar