New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VI. Melanarsite, K3Cu7Fe3+O4(AsO4)4 | Mineralogical Magazine | Cambridge Core (original) (raw)

Abstract

The new mineral melanarsite, K3Cu7Fe3+O4(AsO4)4, was found in the sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka Peninsula, Russia. It is associated with dmisokolovite, shchurovskyite, bradaczekite, hematite, tenorite, aphthitalite, johillerite, arsmirandite, As-bearing orthoclase, hatertite, pharmazincite, etc. Melanarsite occurs as tabular to prismatic crystals up to 0.4 mm, separate or combined in clusters up to 1 mm across or in interrupted crusts up to 0.02 cm × 1 cm × 1 cm covering basalt scoria. The mineral is opaque, black, with a vitreous lustre. Melanarsite is brittle. Mohs' hardness is ∼4 and the mean VHN = 203 kg mm–2. Cleavage was not observed and the fracture is uneven. D calc is 4.39 g cm–3. In reflected light, melanarsite is dark grey. Bireflectance is weak, anisotropism is very weak. Reflectance values [R1–R2, % (λ, nm)] are 10.5–9.4 (470), 10.0–8.9 (546), 9.7–8.7 (589), 9.5–8.6 (650). The Raman spectrum is reported. Chemical composition (wt.%, electron microprobe) is K2O 10.70, CaO 0.03, CuO 45.11, ZnO 0.24, Al2O3 0.32, Fe2O3 6.11, TiO2 0.12, P2O5 0.07, As2O5 36.86, total 99.56. The empirical formula, based on 20 O apfu, is (K2.81Ca0.01)∑2.82(Cu7.02Fe3+ 0.95Al0.08Zn0.04Ti0.02)∑8.11(As3.97P0.01)∑3.98O20. Melanarsite is monoclinic, C2/c, a = 11.4763(9), b = 16.620(2), c = 10.1322(8) Å, β = 105.078(9)°, V = 1866.0(3) Å3 and Z = 4. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are 9.22(100)(110), 7.59(35)(1₃11), 6.084(17) (111), 4.595(26)(1₃31, 220, 2₃21), 3.124(22)(3₃31, 1₃51), 2.763(20)(400, 1₃52), 2.570(23)(043) and 2.473(16) (260, 2₃61, 350). Melanarsite has a novel structure type. Its crystal structure, solved from single-crystal X-ray diffraction data (R = 0.091), is based upon a heteropolyhedral pseudo-framework built by distorted Cu(1–3)O6 and (Fe,Cu)O6 octahedra and As(1–3)O4 tetrahedra. Two crystallographically independent K+ cations are located in the tunnels and voids of the pseudo-framework centring eight- and seven-fold polyhedra. The name reflects the mineral being an arsenate and its black colour (from the Greek μέλαν, black).

Type

Research Article

Copyright

Copyright © The Mineralogical Society of Great Britain and Ireland 2016

References

Africano, F., Van Rompaey, G., Bernard, A. and Le Guern, F. (2002) Deposition of trace elements from high temperature gases of Satsuma-Iwojima volcano. Earth Planets Space, 54, 275–286.CrossRefGoogle Scholar

Agilent Technologies (2012) CrysAlisPro Software system, version 1.171.35.21. Agilent Technologies UK Ltd, Oxford, UK.Google Scholar

Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.CrossRefGoogle Scholar

Cheynet, B., Dall'Aglio, M., Garavelli, A., Grasso, M.F. and Vurro, F. (2000) Trace elements from fumaroles at Vulcano Island (Italy): rates of transport and a thermochemical model. Journal of Volcanology and Geothermal Research, 95, 273–283.CrossRefGoogle Scholar

Clark, R.C. and Reid, J.S. (1995) The analytical calculation of absorption in multifaceted crystals. Acta Crystallographica, A51, 887–897.CrossRefGoogle Scholar

Effenberger, H. and Zemann, J. (1984) The crystal structure of caratiite. Mineralogical Magazine, 48, 541–546.CrossRefGoogle Scholar

Kahlenberg, V., Piotrowski, A. and Giester, G. (2000) Crystal structure of Na4[Cu402(S04)4]-MeCl (Me: Na, Cu, □) — the synthetic Na-analogue of piypite (caratiite). Mineralogical Magazine, 64, 1099–1108.CrossRefGoogle Scholar

Krivovichev, S.V., Vergasova, L.P., Filatov, S.K., Rybin, D.S., Britvin, S.N. and Ananiev, V.V. (2013) Hatertite, Na2(Ca,Na)(Fe3+,Cu)2(AsO4)3, a new alluaudite-group mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia. European Journal of Mineralogy, 25, 683–691.CrossRefGoogle Scholar

Meniaylov, I.A., Nikitina, L.P. and Shapar', V.N. (1980) Geochemical Features of Exhalations of the Great Tolbachik Fissure Eruption. Nauka Publishing, Moscow.Google Scholar

Pekov, I.V., Zubkova, N.V., Chernyshov, D.Y., Zelenski, M.E., Yapaskurt, V.O. and Pushcharovsky, D.Y. (2013) A new Cu-rich variety of lyonsite from fumarolic sublimates of the Tolbachik volcano (Kamchatka, Russia) and its crystal structure. Doklady Earth Sciences, 448, 112–116.CrossRefGoogle Scholar

Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2014a) Pharmazincite, IMA 2014–015. CNMNC Newsletter No. 21, August 2014, page 798; Mineralogical Magazine, 78, 797–804.Google Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. .(2014b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg, Cu)4(AsO4)6 Mineralogical Magazine, 78, 905–917.CrossRefGoogle Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. (2014c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevs-kite, two natural modifications of Cu4O(AsO4)2. Mineralogical Magazine, 78, 1527—1543.Google Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Chukanov, N.V., Lykova, I.S., Savelyev, D.P., Sidorov, E.G. and Pushcharovsky, D.Y. .(2014d) Wulffite, K3NaCu4O2(SO4)4, and parawulffite, K5Na3Cu8O4(SO4)8, two new minerals from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia. The Canadian Mineralogist, 52, 699—716.CrossRefGoogle Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Y.S., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Y. (2014e) Melanarsite, IMA 2201–2048. CNMNC Newsletter No. 22, October 2014, page 1244; Mineralogical Magazine, 78, 1241–1248.Google Scholar

Pekov, I.V., Britvin, S.N., Yapaskurt, V.O., Polekhovsky, Y.S., Krivovichev, S.V., Vigasina, M.F. and Sidorov, E.G. (2015a) Arsmirandite, IMA 2014–2081. CNMNC Newsletter No. 23, February 2015, page 57; Mineralogical Magazine, 79, 51–58.Google Scholar

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. .(2015b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu5O2(AsO4)2. Mineralogical Magazine, 79, 133–143.CrossRefGoogle Scholar

Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. (2015c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV Shchurovskyite, K2CaCu6O2(AsO4)4, and dmisokolovite, K3Cu5AlO2(AsO4)4. Mineralogical Magazine, 79, 1737–1753.CrossRefGoogle Scholar

Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. (2016) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V Katiarsite, KTiO(AsO4). Mineralogical Magazine, 80, 639—646.Google Scholar

Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.Google Scholar

Starova, G.L., Krivovichev, S.V. and Filatov, S.K. (1998) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. II. The crystal structure of Cu4O2[(As,V)O4]Cl. Zeitschrift für Kristallographie, 213, 650–653.Google Scholar

Symonds, R.B. and Reed, M.H. (1993) Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. American Journal of Science, 293, 758—864.CrossRefGoogle Scholar

Symonds, R.B., Rose, W.I., Reed, M.H., Lichte, F.E. and Finnegan, D.L. (1987) Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases of Merapi Volcano, Indonesia. Geochimica et Cosmochimica Acta, 51, 2083—2101.CrossRefGoogle Scholar

Vergasova, L.P. and Filatov, S.K. (2012) New mineral species in products of fumarole activity of the Great Tolbachik Fissure Eruption. Journal of Volcanology and Seismology , 6, 281-289.CrossRefGoogle Scholar

Zelenski, M. and Bortnikova, S. (2005) Sublimate speciation at Mutnovsky volcano, Kamchatka. European Journal of Mineralogy , 17, 107-118.CrossRefGoogle Scholar

Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Polekhovsky, Yu. S. and Pushcharovsky, D.Y.u. (2012) Cupromolybdite, Cu3O(MoO4)2, a new fumarolic mineral from the Tolbachik volcano, Kamchatka Peninsula, Russia. European Journal of Mineralogy , 24, 749-757.Google Scholar