Pseudo-random number generation - cppreference.com (original) (raw)

Pseudo-random number generation

The random number library provides classes that generate random and pseudo-random numbers. These classes include:

URBGs and distributions are designed to be used together to produce random values. All of the random number engines may be specifically seeded, serialized, and de-serialized for use with repeatable simulators.

Contents

[edit] Uniform random bit generators

A uniform random bit generator is a function object returning unsigned integer values such that each value in the range of possible results has (ideally) equal probability of being returned.

All uniform random bit generators meet the UniformRandomBitGenerator requirements. C++20 also defines a uniform_random_bit_generator concept.

[edit] Random number engines

A random number engine (commonly shortened to engine ) is a uniform random bit generator which generates pseudo-random numbers using seed data as entropy source.

At any given time, an engine e of type E has a state ei for some non-negative integer i. Upon construction, e has an initial state e0, which is determined by engine parameters and an initial seed (or seed sequence).

The following properties are always defined for any engine type E:

A pseudo-random number sequence can be generated by calling TA and GA alternatively.

The standard library provides the implementations of three different classes of pseudo-random number generation algorithms as class templates, so that the algorithms can be customized. The choice of which engine to use involves a number of trade-offs:

The Philox engine is a counter-based random number generator. It has a small state and a long period (not less than 2^130) and is intended for use in Monte-Carlo simulations which require massively parallel random number generation. It is easily vectorized and parallelized and is implemented in GPU-optimized libraries. (since C++26)

None of these random number engines are cryptographically secure. As with any secure operation, a crypto library should be used for the purpose (e.g. OpenSSL RAND_bytes).

All types instantiated from these templates meet the RandomNumberEngine requirements.

[edit] Random number engine adaptors

Random number engine adaptors generate pseudo-random numbers using another random number engine as entropy source. They are generally used to alter the spectral characteristics of the underlying engine.

[edit] Predefined random number generators

Several specific popular algorithms are predefined.

Defined in header
Type Definition
minstd_rand0 (C++11) std::linear_congruential_engine<std::uint_fast32_t, 16807, 0, 2147483647> Discovered in 1969 by Lewis, Goodman and Miller, adopted as "Minimal standard" in 1988 by Park and Miller[edit]
minstd_rand (C++11) std::linear_congruential_engine<std::uint_fast32_t, 48271, 0, 2147483647>Newer "Minimum standard", recommended by Park, Miller, and Stockmeyer in 1993[edit]
mt19937 (C++11) std::mersenne_twister_engine<std::uint_fast32_t, 32, 624, 397, 31, 0x9908b0df, 11, 0xffffffff, 7, 0x9d2c5680, 15, 0xefc60000, 18, 1812433253>32-bit Mersenne Twister by Matsumoto and Nishimura, 1998[edit]
mt19937_64 (C++11) std::mersenne_twister_engine<std::uint_fast64_t, 64, 312, 156, 31, 0xb5026f5aa96619e9, 29, 0x5555555555555555, 17, 0x71d67fffeda60000, 37, 0xfff7eee000000000, 43, 6364136223846793005>64-bit Mersenne Twister by Matsumoto and Nishimura, 2000[edit]
ranlux24_base (C++11) std::subtract_with_carry_engine<std::uint_fast32_t, 24, 10, 24>[edit]
ranlux48_base (C++11) std::subtract_with_carry_engine<std::uint_fast64_t, 48, 5, 12>[edit]
ranlux24 (C++11) std::discard_block_engine<std::ranlux24_base, 223, 23> 24-bit RANLUX generator by Martin Lüscher and Fred James, 1994[edit]
ranlux48 (C++11) std::discard_block_engine<std::ranlux48_base, 389, 11> 48-bit RANLUX generator by Martin Lüscher and Fred James, 1994[edit]
knuth_b (C++11) std::shuffle_order_engine<std::minstd_rand0, 256>[edit]
philox4x32 (C++26) std::philox_engine<std::uint_fast32_t, 32, 4, 10, 0xCD9E8D57, 0x9E3779B9, 0xD2511F53, 0xBB67AE85>[edit]
philox4x64 (C++26) std::philox_engine<std::uint_fast64_t, 64, 4, 10, 0xCA5A826395121157, 0x9E3779B97F4A7C15, 0xD2E7470EE14C6C93, 0xBB67AE8584CAA73B>[edit]
default_random_engine (C++11) an implementation-defined RandomNumberEngine type

[edit] Non-deterministic random numbers

std::random_device is a non-deterministic uniform random bit generator, although implementations are allowed to implement std::random_device using a pseudo-random number engine if there is no support for non-deterministic random number generation.

| | non-deterministic random number generator using hardware entropy source (class) [edit] | | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |

[edit] Random number distributions

A random number distribution post-processes the output of a URBG in such a way that resulting output is distributed according to a defined statistical probability density function.

Random number distributions satisfy RandomNumberDistribution.

Defined in header
Uniform distributions
uniform_int_distribution(C++11) produces integer values evenly distributed across a range (class template) [edit]
uniform_real_distribution(C++11) produces real values evenly distributed across a range (class template) [edit]
Bernoulli distributions
bernoulli_distribution(C++11) produces bool values on a Bernoulli distribution (class) [edit]
binomial_distribution(C++11) produces integer values on a binomial distribution (class template) [edit]
negative_binomial_distribution(C++11) produces integer values on a negative binomial distribution (class template) [edit]
geometric_distribution(C++11) produces integer values on a geometric distribution (class template) [edit]
Poisson distributions
poisson_distribution(C++11) produces integer values on a Poisson distribution (class template) [edit]
exponential_distribution(C++11) produces real values on an exponential distribution (class template) [edit]
gamma_distribution(C++11) produces real values on a gamma distribution (class template) [edit]
weibull_distribution(C++11) produces real values on a Weibull distribution (class template) [edit]
extreme_value_distribution(C++11) produces real values on an extreme value distribution (class template) [edit]
Normal distributions
normal_distribution(C++11) produces real values on a standard normal (Gaussian) distribution (class template) [edit]
lognormal_distribution(C++11) produces real values on a lognormal distribution (class template) [edit]
chi_squared_distribution(C++11) produces real values on a chi-squared distribution (class template) [edit]
cauchy_distribution(C++11) produces real values on a Cauchy distribution (class template) [edit]
fisher_f_distribution(C++11) produces real values on a Fisher's F-distribution (class template) [edit]
student_t_distribution(C++11) produces real values on a Student's t-distribution (class template) [edit]
Sampling distributions
discrete_distribution(C++11) produces integer values on a discrete distribution (class template) [edit]
piecewise_constant_distribution(C++11) produces real values distributed on constant subintervals (class template) [edit]
piecewise_linear_distribution(C++11) produces real values distributed on defined subintervals (class template) [edit]

[edit] Utilities

[edit] Random number algorithms

[edit] C random library

In addition to the engines and distributions described above, the functions and constants from the C random library are also available though not recommended:

[edit] Example

#include #include #include #include #include #include   int main() { // Seed with a real random value, if available std::random_device r;   // Choose a random mean between 1 and 6 std::default_random_engine e1(r()); std::uniform_int_distribution uniform_dist(1, 6); int mean = uniform_dist(e1); std::cout << "Randomly-chosen mean: " << mean << '\n';   // Generate a normal distribution around that mean std::seed_seq seed2{r(), r(), r(), r(), r(), r(), r(), r()}; std::mt19937 e2(seed2); std::normal_distribution<> normal_dist(mean, 2);   std::map<int, int> hist; for (int n = 0; n != 10000; ++n) ++hist[std::round(normal_dist(e2))];   std::cout << "Normal distribution around " << mean << ":\n" << std::fixed << std::setprecision(1); for (auto [x, y] : hist) std::cout << std::setw(2) << x << ' ' << std::string(y / 200, '*') << '\n'; }

Possible output:

Randomly-chosen mean: 4 Normal distribution around 4: -4 -3 -2 -1 0 * 1 *** 2 ****** 3 ******** 4 ********* 5 ******** 6 ****** 7 *** 8 * 9 10 11 12

[edit] See also