GitHub - OptimalScale/LMFlow: An Extensible Toolkit for Finetuning and Inference of Large Foundation Models. Large Models for All. (original) (raw)

LMFlow

LMFlow

Website Code License Python 3.9+ Doc Embark slack badge WeChat badge

An extensible, convenient, and efficient toolbox for finetuning large machine learning models, designed to be user-friendly, speedy and reliable, and accessible to the entire community.

LMFlow-features

Latest News

Important

Table of Contents

Quick Start

Setup

Our package has been tested on Linux OS (Ubuntu 20.04). Other OS platforms (MacOS, Windows) are not fully tested, where you may encounter unexpected errors. If you are using LMFlow for the first time, we recommend you to try on a Linux machine or Google Colab.

git clone -b v1.0.0 https://github.com/OptimalScale/LMFlow.git cd LMFlow conda create -n lmflow python=3.9 -y conda activate lmflow conda install mpi4py pip install -e .

Looking for a previous version?

git clone -b v0.0.10 https://github.com/OptimalScale/LMFlow.git cd LMFlow conda create -n lmflow python=3.9 -y conda activate lmflow conda install mpi4py pip install -e .

For CUDA versions 10.3-11.7

git clone -b v0.0.5 https://github.com/OptimalScale/LMFlow.git cd LMFlow conda create -n lmflow python=3.9 -y conda activate lmflow conda install mpi4py pip install -e .

Tip

We use WandB to track and visualize the training process by default. Before running the training scripts, users may need to log in to WandB using the command:

For detailed instructions, refer to the WandB Quickstart Guide. Step 1 (registration) and Step 2 (login using your WandB API key) should be sufficient to set up your environment.

Disabling wandb

One can disable wandb by either:

  1. Adding environment variable before running the training command.

export WANDB_MODE=disabled

  1. OR, specifying the integrations to report the results and logs to. In the training script, add:

Prepare Dataset

Please refer to our doc.

Finetuning

Estimated Hardware Requirement

Method 0.5B 3B 7B 14B 30B 70B xB
Full bf16/fp16 9GB 55GB 120GB 240GB 600GB 1200GB 18xGB
LoRA 1GB 6GB 16GB 32GB 64GB 160GB 2xGB
QLoRA quant_bit=8 0.7GB 3GB 10GB 20GB 40GB 80GB xGB
QLoRA quant_bit=4 0.4GB 1.5GB 6GB 12GB 24GB 48GB x/2GB

Full Finetuning

Full training updates all the parameters to finetune a language model. Here is an example to finetune a GPT-2 base model.

cd data && ./download.sh alpaca && cd -

bash ./scripts/run_finetune.sh
--model_name_or_path gpt2
--dataset_path data/alpaca/train_conversation
--output_model_path output_models/finetuned_gpt2

Tip

For conversation dataset, specify a conversation template for better performance by adding --conversation_template to the command.

Llama-3-8B conversation dataset example

cd data && ./download.sh alpaca && cd -

bash ./scripts/run_finetune.sh
--model_name_or_path meta-llama/Meta-Llama-3-8B
--dataset_path data/alpaca/train_conversation
--conversation_template llama3
--output_model_path output_models/finetuned_llama3_8b

LISA

LISA is a memory-efficient finetuning algorithm that allows tradeoff between memory and the number of randomly unfreezed layers. This script currently is only tested in single gpus. Please stay tuned for our latest updates 😄

cd data && ./download.sh alpaca && cd -

bash ./scripts/run_finetune_with_lisa.sh
--model_name_or_path meta-llama/Llama-2-7b-hf
--dataset_path data/alpaca/train_conversation
--output_model_path output_models/finetuned_llama2_7b
--lisa_activated_layers 1
--lisa_interval_steps 20

Tip

Llama-2-7B conversation dataset example

cd data && ./download.sh alpaca && cd -

bash ./scripts/run_finetune_with_lisa.sh
--model_name_or_path meta-llama/Llama-2-7b-hf
--dataset_path data/alpaca/train_conversation
--conversation_template llama2
--output_model_path output_models/finetuned_llama2_7b_lisa
--lisa_activated_layers 1
--lisa_interval_steps 20

LoRA

LoRA is a parameter-efficient finetuning algorithm and is more efficient than full finetuning.

cd data && ./download.sh alpaca && cd -

bash ./scripts/run_finetune_with_lora.sh
--model_name_or_path facebook/galactica-1.3b
--dataset_path data/alpaca/train_conversation
--output_lora_path output_models/finetuned_galactica_lora

Tip

Llama-2-7B conversation dataset example

cd data && ./download.sh alpaca && cd -

bash ./scripts/run_finetune_with_lora.sh
--model_name_or_path meta-llama/Llama-2-7b-hf
--dataset_path data/alpaca/train_conversation
--conversation_template llama2
--output_model_path output_models/finetuned_llama2_7b_lora \

Merge LoRA Weight

Merge LoRA weight and the base model into one using:

bash ./scripts/run_merge_lora.sh
--model_name_or_path Qwen/Qwen1.5-1.8B
--lora_model_path output_models/lora
--output_model_path output_models/lora_merged \

Inference

After finetuning, you can run the following command to chat with the model.

bash ./scripts/run_chatbot.sh output_models/finetuned_gpt2

Tip

We recommend using SGLang for faster batch inference.

Faster inference using SGLang

bash ./scripts/run_sglang_inference.sh

Deployment

If you want to deploy your own model locally, we provide a gradio-based UI for building chatbots. Running the following command will launch the demo for robin-7b:

pip install gradio python ./examples/chatbot_gradio.py --deepspeed configs/ds_config_chatbot.json --model_name_or_path YOUR-LLAMA --lora_model_path ./robin-7b --prompt_structure "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: {input_text}###Assistant:" --end_string "#" --max_new_tokens 200

Evaluation

LMFlow Benchmark is an automatic evaluation framework for open-source large language models. We use negative log likelihood (NLL) as the metric to evaluate different aspects of a language model: chitchat, commonsense reasoning, and instruction following abilities.

You can directly run the LMFlow benchmark evaluation to obtain the results to participate in theLLM comparision. For example, to run GPT2 XL, one may execute

bash ./scripts/run_benchmark.sh --model_name_or_path gpt2-xl

--model_name_or_path is required, you may fill in huggingface model name or local model path here.

To check the evaluation results, you may check benchmark.log in ./output_dir/gpt2-xl_lmflow_chat_nll_eval,./output_dir/gpt2-xl_all_nll_eval and ./output_dir/gpt2-xl_commonsense_qa_eval.

Supported Features

Finetune Acceleration & Memory Optimization

Support

If you need any help, please submit a Github issue.

License

The code included in this project is licensed under the Apache 2.0 license. If you wish to use the codes and models included in this project for commercial purposes, please sign this document to obtain authorization.

Citation

If you find this repository useful, please consider giving ⭐ and citing our paper:

@article{diao2023lmflow,
  title={Lmflow: An extensible toolkit for finetuning and inference of large foundation models},
  author={Diao, Shizhe and Pan, Rui and Dong, Hanze and Shum, Ka Shun and Zhang, Jipeng and Xiong, Wei and Zhang, Tong},
  journal={arXiv preprint arXiv:2306.12420},
  year={2023}
}
@article{dong2023raft,
  title={Raft: Reward ranked finetuning for generative foundation model alignment},
  author={Dong, Hanze and Xiong, Wei and Goyal, Deepanshu and Pan, Rui and Diao, Shizhe and Zhang, Jipeng and Shum, Kashun and Zhang, Tong},
  journal={arXiv preprint arXiv:2304.06767},
  year={2023}
}
@article{pan2024lisa,
  title={LISA: Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning}, 
  author={Pan, Rui and Liu, Xiang and Diao, Shizhe and Pi, Renjie and Zhang, Jipeng and Han, Chi and Zhang, Tong},
  journal={arXiv preprint arXiv:2403.17919},
  year={2024}
}