BUG: In Series all null-values are printed as NaN · Issue #45263 · pandas-dev/pandas (original) (raw)
Navigation Menu
- Explore
- Pricing
Provide feedback
Saved searches
Use saved searches to filter your results more quickly
Appearance settings
Description
Pandas version checks
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of pandas.
- I have confirmed this bug exists on the master branch of pandas.
Reproducible Example
import pandas as pd import numpy as np s=pd.Series([1, 2, 3, 4], [True, None, np.nan, pd.NaT]) print(s)
Issue Description
All null-keys are printed as NaN:
This is confusing
Expected Behavior
True 1
None 2
nan 3
NaT 5
would be clearer
Installed Versions
INSTALLED VERSIONS
commit : c950850
python : 3.8.5.final.0
python-bits : 64
OS : Linux
OS-release : 4.4.0-53-generic
Version : #74-Ubuntu SMP Fri Dec 2 15:59:10 UTC 2016
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.4.0.dev0+1594.gc950850
numpy : 1.19.1
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.3
setuptools : 58.0.4
Cython : 0.29.24
pytest : 6.0.2
hypothesis : 5.28.0
sphinx : 3.2.1
blosc : None
feather : None
xlsxwriter : 1.3.6
lxml.etree : 4.5.2
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.18.1
pandas_datareader: None
bs4 : 4.9.1
bottleneck : 1.3.2
fsspec : 0.8.2
fastparquet : 0.4.1
gcsfs : 0.7.1
matplotlib : 3.3.2
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.5
pandas_gbq : None
pyarrow : 1.0.1
pyxlsb : None
s3fs : 0.4.2
scipy : 1.5.2
sqlalchemy : 1.3.19
tables : 3.6.1
tabulate : 0.8.7
xarray : 0.16.1
xlrd : 1.2.0
xlwt : 1.3.0
numba : 0.51.2
zstandard : None