PERF: read_html: Reading one HTML file with multiple tables is much slower than loading each table separatly · Issue #49929 · pandas-dev/pandas (original) (raw)

Skip to content

Provide feedback

Saved searches

Use saved searches to filter your results more quickly

Sign up

Appearance settings

@PascalStehling

Description

@PascalStehling

Pandas version checks

Reproducible Example

import pandas as pd import numpy as np from io import StringIO import pandas.testing as pdt from time import time

Creating HTML-Table Strings, 10 Tables, with 15 columns and 300 rows each

dataframes = [pd.DataFrame(np.random.randint(0,100, (300, 15)), columns=[f"Col-{i}" for i in range(15)])]*10 html_strings = [df.to_html() for df in dataframes]

Testing the runtime when all HTML Tables are combined into a single string

combined_html = "\n".join(html_strings) start = time() combined = pd.read_html(StringIO(combined_html)) combined_time = time()-start print(f"Took {combined_time} Seconds to load the combined data")

Took 23.394442081451416 Seconds to load the combined data

Testing the runtime when each HTML Table is read in separately

start = time() chunked = [pd.read_html(StringIO(string))[0] for string in html_strings] chunked_time = time()-start print(f"Took {chunked_time} Seconds to load the data in chunks")

Took 0.5712969303131104 Seconds to load the data in chunks

print(f"Chunked was {round(combined_time/chunked_time, 2)} faster than the combined data")

Chunked was 40.95 faster than the combined data

Checking if the resulting tables are the same

combined_df = pd.concat(combined).reset_index(drop=True) chunked_df = pd.concat(chunked).reset_index(drop=True) pdt.assert_frame_equal(combined_df, chunked_df) # No Assertion => data is the same

Installed Versions

INSTALLED VERSIONS

commit : 8dab54d
python : 3.10.8.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19045
machine : AMD64
processor : AMD64 Family 23 Model 113 Stepping 0, AuthenticAMD
byteorder : little
LC_ALL : None
LANG : None
LOCALE : de_DE.cp1252

pandas : 1.5.2
numpy : 1.23.5
pytz : 2022.6
dateutil : 2.8.2
setuptools : 65.6.3
pip : 22.3
Cython : None
pytest : 7.2.0
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.1
html5lib : None
pymysql : None
psycopg2 : 2.9.5
jinja2 : 3.1.2
IPython : 8.6.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : None
brotli : None
fastparquet : 0.8.3
fsspec : 2022.11.0
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : 1.4.44
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
xlwt : None
zstandard : None
tzdata : None

Prior Performance

No response